满分5 > 高中数学试题 >

有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点...

有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数、质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.
(Ⅰ)求仅闯过第一关的概率;
(Ⅱ)记成功闯过的关数为ξ,求ξ的分布列和期望.
(I)由题意记“仅闯过第一关的概率”这一事件为A,利用独立事件的概率公式即可; (II)由于ξ表示成功闯过的关的次数,由题意则ξ的取值有0,1,2,3,并利用随机变量得到定义求出每一个值下对应的事件的概率,有分布列定义求出其分布列,并根据期望定义求出期望. 【解析】 (Ⅰ)记“仅闯过第一关的概率”这一事件为A, 第1关过了的概率为,而第2关没过的情况有如下三种:(1,1)、(1,2)、(2,1),(2,2)(3,1),(1,3),概率为, 所以仅闯过第一关的概率为P(A)== (Ⅱ)由题意得,ξ的取值有0,1,2,3, ∵,P(ξ=1)= P(ξ=2)= P(ξ=3)= 即随机变量ξ的概率分布列为: ξ 1 2 3 p 所以 Eξ==
复制答案
考点分析:
相关试题推荐
设m,n∈N,f(x)=(1+2x)m+(1+x)n
(Ⅰ)当m=n=2011时,记f(x)=a+a1x+a2x2+…+a2011x2011,求a-a1+a2-…-a2011
(Ⅱ)若f(x)展开式中x的系数是20,则当m、n变化时,试求x2系数的最小值.
查看答案
A(选修4-1:几何证明选讲)
如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.
求证:DE2=DB•DA.
B(选修4-2:矩阵与变换)
求矩阵manfen5.com 满分网的特征值及对应的特征向量.
C(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是manfen5.com 满分网(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
D(选修4-5:不等式选讲)
已知m>0,a,b∈R,求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数f(x)=x2+a|lnx-1|,g(x)=x|x-a|+2-2ln2,a>0.
(Ⅰ)当a=1时,求函数f(x)在区间[1,e]上的最大值;
(Ⅱ)若manfen5.com 满分网恒成立,求a的取值范围;
(Ⅲ)对任意x1∈[1,+∞),总存在惟一的x2∈[2,+∞),使得f(x1)=g(x2)成立,求a的取值范围.
查看答案
已知数列{an}满足a1=2,前n项和为Snmanfen5.com 满分网
(Ⅰ)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前n项和Tn
(Ⅱ)若数列{cn}满足cn=a2n,试判断cn是否为等比数列,并说明理由;
(Ⅲ)当manfen5.com 满分网时,问是否存在n∈N*,使得(S2n+1-10)c2n=1,若存在,求出所有的n的值;若不存在,请说明理由.
查看答案
因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中manfen5.com 满分网
若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,
当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:manfen5.com 满分网取1.4).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.