满分5 > 高中数学试题 >

已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A...

已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q,
(1)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值;
(2)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由.

manfen5.com 满分网
(1)先求出焦点坐标,再利用抛物线的定义把焦点F的距离为3转化为到准线的距离为3即可求m的值;(也可以直接利用两点间的距离公式求解.) (2)△ABQ是以Q为直角顶点的直角三角形即是,把直线方程和抛物线方程联立,可以得到A,B两点的坐标进而求得P以及Q的坐标,代入,即可求出m的值. 【解析】 (1)∵抛物线C的焦点, ∴,得. (2)联立方程, 消去y得mx2-2x-2=0,设A(x1,mx12),B(x2,mx22), 则(*), ∵P是线段AB的中点,∴,即,∴, 得, 若存在实数m,使△ABQ是以Q为直角顶点的直角三角形,则, 即, 结合(*)化简得, 即2m2-3m-2=0,∴m=2或(舍去), ∴存在实数m=2,使△ABQ是以Q为直角顶点的直角三角形.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3-3a|x-1|,
(1)当a=1时,试判断函数f(x)的奇偶性,并说明理由;
(2)当a>0时,求函数f(x)在[0,+∞)内的最小值.
查看答案
已知等差数列{an}的公差为-1,且a2+a7+a12=-6,
(1)求数列{an}的通项公式an与前n项和Sn
(2)将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*总有Sn<Tm+λ恒成立,求实数λ的取值范围.
查看答案
三棱锥P-ABC中,PA=AB=AC,∠BAC=120°,PA⊥平面ABC,点E、F分别为线段PC、BC的中点,
(1)判断PB与平面AEF的位置关系并说明理由;
(2)求直线PF与平面PAC所成角的正弦值.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网
(1)求函数y=f(x)的单调递增区间;
(2)设△ABC的内角A满足f(A)=2,而manfen5.com 满分网,求边BC的最小值.
查看答案
观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…由以上等式推测到一个一般的结论:对于n∈N*,12-22+32-42+…+(-1)n+1n2=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.