满分5 > 高中数学试题 >

有一箱子,内有3黑球与2白球.有一游戏,从箱子中任取出一球.假设每一颗球被取出的...

有一箱子,内有3黑球与2白球.有一游戏,从箱子中任取出一球.假设每一颗球被取出的机率都相同,若取出黑球可得奖金50元,而取出白球可得奖金100元,则下列哪一个选项是此游戏的奖金期望值?
(1)70 元  (2)75 元  (3)80 元  (4)85 元  (5)90 元.
由题意由于箱子,内有3黑球与2白球.有一游戏,从箱子中任取出一球.假设每一颗球被取出的机率都相同,若取出黑球可得奖金50元,而取出白球可得奖金100元,利用古典概型随机事件的概率公式及期望定义即可求得. 【解析】 黑球 白球 奖金 50元 100元 机率 故期望值=(元) 故答案为:(1)
复制答案
考点分析:
相关试题推荐
已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q,
(1)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值;
(2)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知函数f(x)=x3-3a|x-1|,
(1)当a=1时,试判断函数f(x)的奇偶性,并说明理由;
(2)当a>0时,求函数f(x)在[0,+∞)内的最小值.
查看答案
已知等差数列{an}的公差为-1,且a2+a7+a12=-6,
(1)求数列{an}的通项公式an与前n项和Sn
(2)将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn,若存在m∈N*,使对任意n∈N*总有Sn<Tm+λ恒成立,求实数λ的取值范围.
查看答案
三棱锥P-ABC中,PA=AB=AC,∠BAC=120°,PA⊥平面ABC,点E、F分别为线段PC、BC的中点,
(1)判断PB与平面AEF的位置关系并说明理由;
(2)求直线PF与平面PAC所成角的正弦值.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网
(1)求函数y=f(x)的单调递增区间;
(2)设△ABC的内角A满足f(A)=2,而manfen5.com 满分网,求边BC的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.