某远洋捕渔船到远海捕鱼,由于远海渔业资源丰富,每撒一次网都有w万元的收益;同时,又由于远海风云未测,每撒一次网存在遭遇沉船事故的可能,其概率为
(常数k为大于l的正整数).假定,捕鱼船吨位很大,可以装下几次撒网所捕的鱼,而在每次撒网时,发生不发生沉船事故与前一次撒网无关,若发生沉船事故,则原来所获的收益将随船的沉没而不存在,又已知船长计划在此处撒网n次.
(1)当n=3时,求捕鱼收益的期望值
(2)试求n的值,使这次远洋捕鱼收益的期望值达到最大.
考点分析:
相关试题推荐
如图,在椭圆C中,点F
1是左焦点,A(a,0),B(0,b)分别为右顶点和上顶点,点O为椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的射影.
(1)求证:当a取定值时,点H必为定点;
(2)如果点H落在左顶点与左焦点之间,试求椭圆离心率的取值范围;
(3)如果以OP为直径的圆与直线AB相切,且凸四边形ABPH的面积等于
,求椭圆的方程.
查看答案
如图,矩形ABCD与矩形AB′C′D全等,且所在平面所成的二面角为a,记两个矩形对角线的交点分别为Q,Q′,AB=a,AD=b.
(1)求证:QQ′∥平面ABB′;
(2)当
,且
时,求异面直线AC与DB′所成的角;
(3)当a>b,且AC⊥DB'时,求二面角a的余弦值(用a,b表示).
查看答案
设函数
.
(1)试判定函数f(x)的单调性,并说明理由;
(2)已知函数f(x)的图象在点A(x
,f(x
))处的切线斜率为
,求
的值.
查看答案
如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题:①动点A′在平面ABC上的射影在线段AF上;②三棱锥A′-FED的体积有最大值;③恒有平面A′GF⊥平面BCED;
④异面直线A′E与BD不可能互相垂直;⑤异面直线FE与A′D所成角的取值范围是
.其中正确命题的序号是
.(将正确命题的序号都填上)
查看答案
如果点p在平面区域
上,点Q在曲线(x+2)
2+y
2=1上,那么|PQ|的最大值为
.
查看答案