满分5 > 高中数学试题 >

设数列{xn}的所有项都是不等于1的正数,前n项和为Sn,已知点Pn(xn,Sn...

设数列{xn}的所有项都是不等于1的正数,前n项和为Sn,已知点Pn(xn,Sn)在直线y=kx+b上,(其中,常数k≠0,且k≠1),又yn=log0.5xn
(1)求证:数列{xn}是等比数列;
(2)如果yn=18-3n,求实数k,b的值;
(3)如果存在t,s∈N*,s≠t,使得点(t,ys)和(s,yt)都在直线y=2x+1上,试判断,是否存在自然数M,当n>M时,xn>1恒成立?若存在,求出M的最小值,若不存在,请说明理由.
(1)由an+1=Sn+1-Sn着手考虑,把点Pn、Pn+1的坐标代入直线y=kx+b,然后两式相减得xn+1与xn的关系式,最后整理为等比数列的形式即可. (2)由(1)知{xn}是等比数列,则根据条件消去yn得xn与n的关系式,此时与等比数列通项xn=x1qn-1相比较,易得x1与q,进而可求得k与b. (3)由{xn}是等比数列且yn=log0.5xn可得数列{yn}为等差数列;由ys、yt作差得数列{yn}是d=-2的等差数列;所以当n>M时,xn>1恒成立问题应利用yn=log0.5xn转化为yn<0恒成立的问题;再把数列{yn}的首项用s、t的关系式表示出来,则可表示出数列{yn}的通项;最后列不等式组,解出M,即证明问题. 【解析】 (1)∵点Pn(xn,Sn),Pn+1(xn+1,Sn+1)都在直线y=kx+b上, ∴Sn=kxn+b,Sn+1=kxn+1+b 两式相减得Sn+1-Sn=kxn+1-kxn,即xn+1=kxn+1-kxn, ∵常数k≠0,且k≠1,∴(非零常数) ∴数列xn是等比数列. (2)由yn=log0.5xn,得, ∴,得. 又Pn在直线上,得Sn=kxn+b, 令n=1得. (3)∵yn=log0.5xn∴当n>M时,xn>1恒成立等价于yn<0恒成立. 又yn=log0.5xn=log0.5(x1•qn-1)=nlog0.5q+log0.5 ∴数列{yn}为等差数列 ∵存在t,s∈N*,使得(t,ys)和(s,yt)都在y=2x+1上, ∴ys=2t+1 ①,yt=2s+1 ②. ①-②得:ys-yt=2(t-s), ∵s≠t∴yn是公差d=-2<0的等差数列 ①+②得:ys+yt=2(t+s)+2, 又ys+yt=y1+(s-1)•(-2)+y1+(t-1)•(-2)=2y1-2(s+t)+4 由2y1-2(s+t)+4=2(t+s)+2,得y1=2(t+s)-1>0, 即:数列{yn}是首项为正,公差为负的等差数列, ∴一定存在一个最小自然数M,使,即 解得.∵M∈N*,∴M=t+s. 即存在自然数M,其最小值为t+s,使得当n>M时,xn>1恒成立.
复制答案
考点分析:
相关试题推荐
某远洋捕渔船到远海捕鱼,由于远海渔业资源丰富,每撒一次网都有w万元的收益;同时,又由于远海风云未测,每撒一次网存在遭遇沉船事故的可能,其概率为manfen5.com 满分网(常数k为大于l的正整数).假定,捕鱼船吨位很大,可以装下几次撒网所捕的鱼,而在每次撒网时,发生不发生沉船事故与前一次撒网无关,若发生沉船事故,则原来所获的收益将随船的沉没而不存在,又已知船长计划在此处撒网n次.
(1)当n=3时,求捕鱼收益的期望值
(2)试求n的值,使这次远洋捕鱼收益的期望值达到最大.
查看答案
manfen5.com 满分网如图,在椭圆C中,点F1是左焦点,A(a,0),B(0,b)分别为右顶点和上顶点,点O为椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的射影.
(1)求证:当a取定值时,点H必为定点;
(2)如果点H落在左顶点与左焦点之间,试求椭圆离心率的取值范围;
(3)如果以OP为直径的圆与直线AB相切,且凸四边形ABPH的面积等于manfen5.com 满分网,求椭圆的方程.
查看答案
manfen5.com 满分网如图,矩形ABCD与矩形AB′C′D全等,且所在平面所成的二面角为a,记两个矩形对角线的交点分别为Q,Q′,AB=a,AD=b.
(1)求证:QQ′∥平面ABB′;
(2)当manfen5.com 满分网,且manfen5.com 满分网时,求异面直线AC与DB′所成的角;
(3)当a>b,且AC⊥DB'时,求二面角a的余弦值(用a,b表示).
查看答案
设函数manfen5.com 满分网
(1)试判定函数f(x)的单调性,并说明理由;
(2)已知函数f(x)的图象在点A(x,f(x))处的切线斜率为manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
manfen5.com 满分网如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题:①动点A′在平面ABC上的射影在线段AF上;②三棱锥A′-FED的体积有最大值;③恒有平面A′GF⊥平面BCED;
④异面直线A′E与BD不可能互相垂直;⑤异面直线FE与A′D所成角的取值范围是manfen5.com 满分网.其中正确命题的序号是    .(将正确命题的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.