满分5 > 高中数学试题 >

已知对任意的x>0恒有a1nx≤b(x-1)成立. (1)求正数a与b的关系; ...

已知对任意的x>0恒有a1nx≤b(x-1)成立.
(1)求正数a与b的关系;
(2)若a=1,设f(x)=mmanfen5.com 满分网+n,(m,n∈R),若1nx≤f(x)≤b(x-1)对∀x>0恒成立,求函数f(x)的解析式;
(3)证明:1n(n!)>2n-4manfen5.com 满分网(n∈N,n≥2)
(1)由条件构造函数,进而把不等式问题转化为函数的最值问题,求导,从而得到a与b的关系; (2)待定系数法求函数的解析式,注意不等式中等号成立的条件,是解答此题的关键; (3)借助于(2)的结论来证明(3),利用放缩法达到证明不等式的目的. 【解析】 (1)设f(x)=alnx-b(x-1), 易知f(1)=0,由已知f(x)≤0恒成立, 所以函数f(x)在x=1处取得最大值.∴f'(1)=0,∴a=b 又∵a>0,∴f(x)在x=1处取得极大值,符合题意, 即关系式为a=b.(3分) (2)∵a=1,∴b=1∴恒成立, 令x=1,有0≤m+n≤0,∴m+n=0(5分)∴, 即对∀x>0恒成立,∴须1-m=-1,即m=2∴函数(7分) (3)由(2)知:(9分) ∴= 即(12分)
复制答案
考点分析:
相关试题推荐
已知定点manfen5.com 满分网,B是圆manfen5.com 满分网(C为圆心)上的动点,AB的垂直平分线与BC交于点E.
(1)求动点E的轨迹方程;
(2)设直线l:y=kx+m(k≠0,m>0)与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程.
查看答案
manfen5.com 满分网如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,△ABC为边长为2的正三角形,点P在A1B上,且AB⊥CP.
(1)证明:P为A1B中点.
(2)若A1B⊥AC1,求二面角B1-PC-B的余弦值.
查看答案
单位为30元/件的日用品上市以后供不应求,为满足更多的消费者,某商场在销售的过程中要求购买这种产品的顾客必须参加如下活动:摇动如图所示的游戏转盘(上面扇形的圆心角都相等),按照指针所指区域的数字购买商品的件数,在摇动转盘之前,顾客可以购买20元/张的代金券(限每人至多买12张),每张可以换一件该产品,如果不能按照指针所指区域的数字将代金券用完,那么余下的不能再用,但商场会以6元/张的价格回收代金券,每人只能参加一次这个活动,并且不能代替别人购买.
(1)如果某顾客购买12张代金券,最好的结果是什么?出现这种结果的概率是多少?
(2)求需要这种产品的顾客,能够购买到该产品件数ξ的分布列及均值.
(3)如果某顾客购买8张代金券,求该顾客得到优惠的钱数的均值.

manfen5.com 满分网 查看答案
2009年11月30时3时许,位于哈尔滨市南岗区东大直街323号的大世界商城发生火灾,为扑灭某着火点,现场安排了两支水枪,如图,D是着火点,A,B分别是水枪位置,已知manfen5.com 满分网米,在A处看到着火点的仰角为60°,∠ABC=30°,∠BAC=105°,求两支水枪的喷射距离至少是多少?

manfen5.com 满分网 查看答案
已知AB=2,BC=1的矩形ABCD,沿对角形BD将△BDC折起得到三棱锥C-ABD,且三棱锥的体积为manfen5.com 满分网,则异面直线BC与AD所成角的余弦值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.