(Ⅰ)过F1作F1⊥l可直接根据直角三角形的边角关系得到,求得c的值,进而可得到焦距的值.
(Ⅱ)假设点A,B的坐标,再由点斜式得到直线l的方程,然后联立直线与椭圆方程消去x得到关于y的一元二次方程,求出两根,再由可得y1与y2的关系,再结合所求得到y1与y2的值可得到a,b的值,进而可求得椭圆方程.
【解析】
(Ⅰ)设焦距为2c,由已知可得F1到直线l的距离.
所以椭圆C的焦距为4.
(Ⅱ)设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0,直线l的方程为.
联立.
解得.
因为.
即.
得.
故椭圆C的方程为.