满分5 > 高中数学试题 >

设F1,F2分别为椭圆(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A...

设F1,F2分别为椭圆manfen5.com 满分网(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的焦距;
(Ⅱ)如果manfen5.com 满分网,求椭圆C的方程.
(Ⅰ)过F1作F1⊥l可直接根据直角三角形的边角关系得到,求得c的值,进而可得到焦距的值. (Ⅱ)假设点A,B的坐标,再由点斜式得到直线l的方程,然后联立直线与椭圆方程消去x得到关于y的一元二次方程,求出两根,再由可得y1与y2的关系,再结合所求得到y1与y2的值可得到a,b的值,进而可求得椭圆方程. 【解析】 (Ⅰ)设焦距为2c,由已知可得F1到直线l的距离. 所以椭圆C的焦距为4. (Ⅱ)设A(x1,y1),B(x2,y2),由题意知y1<0,y2>0,直线l的方程为. 联立. 解得. 因为. 即. 得. 故椭圆C的方程为.
复制答案
考点分析:
相关试题推荐
已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.
(I)求m与n的关系表达式;
(II)求f(x)的单调区间.
查看答案
已知三角形ABC的顶点分别为A(-3,0)、B(9,5)、C(3,9),直线l经过C把三角形的面积为1:2两部分,求直线l的方程.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若manfen5.com 满分网
(Ⅰ)求A; 
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
已知函数manfen5.com 满分网的定义域为manfen5.com 满分网,值域为[-5,1],求常数a,b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.