满分5 > 高中数学试题 >

已知椭圆=1(a>b>0)的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1...

已知椭圆manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2
垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程:
(3)C2与x轴交于点Q,不同的两点R,S在C2上,且满足manfen5.com 满分网,若R、S到x轴的距离分别为d1和d2,求d1+d2的最小值.
(1)先由离心率为 ,求出a,b,c的关系,再利用直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切,求出b即可求椭圆C1的方程; (2)把题中条件转化为动点M的轨迹是以l1:x=-1为准线,F2为焦点的抛物线,即可求点M的轨迹C2的方程; (3)先设出点R,S的坐标,利用 求出点R,S的坐标之间的关系,再用点R,S的坐标表示出 d1+d2,利用函数求最值的方法即可求 d1+d2的最小值. 【解析】 (1)由 得2a2=3b2,又由直线l:y=x+2与圆x2+y2=b2相切, 得 ,,∴椭圆C1的方程为:.(4分) (2)由MP=MF2得动点M的轨迹是以l1:x=-1为准线, F2为焦点的抛物线,∴点M的轨迹C2的方程为y2=4x.(8分) (3)Q(0,0),设 , ∴, 由 ,得,∴y1y2=-16, ∴d1+d2=|y1|+|y2|═|y1|+||≥8, 当y1=±4时取等号,d1+d2的最小值为8.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°,F为AE中点.
(Ⅰ)求证:平面ADE⊥平面ABE;
(Ⅱ)求二面角A-EB-D的大小的余弦值;
(Ⅲ)求点F到平面BDE的距离.

manfen5.com 满分网 查看答案
已知等差数列{an} 的前n项和为Sn,a2=9,S5=65.
(I)求{an} 的通项公式:
(II)令manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)在△ABC中,已知A为锐角,f(A)=1,manfen5.com 满分网,求AC边的长.
查看答案
如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为   
manfen5.com 满分网 查看答案
在极坐标系中,曲线ρ=4sinθ和ρcosθ=1相交于点A、B,则|AB|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.