满分5 >
高中数学试题 >
设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若∁UM={2,...
设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若∁UM={2,3},则实数P的值为( )
A.-4
B.4
C.-6
D.6
考点分析:
相关试题推荐
选修4-1;几何证明选讲.
如图,在△ABC中,∠B=90°,以AB为直径的⊙O交AC于D,点E为BC的中点,连接DE、AE,AE交⊙O于点F.
(1)求证:DE是⊙O的切线;(2)若⊙O的直径为2,求AD•AC的值.
查看答案
已知椭圆C:
(a>b>0)的离心率为
,其左、右焦点分别是F
1、F
2,点P是坐标平面内的一点,且|OP|=
,
•
=
(点O为坐标原点).
(1)求椭圆C的方程;
(2)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使
+
=λ
,λ∈(0,2)求△OMN面积的最大值.
查看答案
已知函数f(x)=(x
2-a)e
x(e为自然对数的底数),g(x)=f(x)-b,其中曲线f(x)在(0,f(0))处的切线斜率为-3.
(1)求函数f(x)的单调区间;(2)设方程g(x)=0有且仅有一个实根,求实数b的取值范围.
查看答案
已知四棱锥P-ABCD的底面ABCD是等腰梯形,AD∥BC,且BC=2AB=2AD=2,侧面PAD为等边三角形,PB=PC=
.
(1)求证:PC⊥平面PAB;(2)求四棱锥P-ABCD的体积.
查看答案
某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.
(1)求第五、六组的频数,补全频率分布直方图;
(2)若每组数据用该组区间中点值(例如区间[70,80)的中点值是
75作为代表,试估计该校高一学生历史成绩的平均分;
(3)估计该校高一学生历史成绩在70~100分范围内的人数.
查看答案