满分5 > 高中数学试题 >

设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐...

设椭圆C1manfen5.com 满分网的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,manfen5.com 满分网),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.

manfen5.com 满分网
(Ⅰ)抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点.求出B,F1,F2点的坐标,即可求出椭圆的半长轴与半焦距,再求出a写出椭圆方程. (Ⅱ)设N(t,t2-1),表示出过点N的抛物线的切线方程,与椭圆的方程联立,利用弦长公式表示出线段PQ的长度,再求出点M到直线PQ的距离为d,表示出△MPQ面积,由于其是参数t的函数,利用函数的知识求出其最值即可得到,△MPQ的面积的最大值 【解析】 (Ⅰ)由题意可知B(0,-1),则A(0,-2),故b=2. 令y=0得x2-1=0即x=±1,则F1(-1,0),F2(1,0),故c=1. 所以a2=b2+c2=5.于是椭圆C1的方程为:.(3分) (Ⅱ)设N(t,t2-1),由于y'=2x知直线PQ的方程为:y-(t2-1)=2t(x-t).即y=2tx-t2-1.(4分) 代入椭圆方程整理得:4(1+5t2)x2-20t(t2+1)x+5(t2+1)2-20=0,△=400t2(t2+1)2-80(1+5t2)[(t2+1)2-4]=80(-t4+18t2+3),,, 故=.(7分) 设点M到直线PQ的距离为d,则.(9分) 所以,△MPQ的面积S====(11分) 当t=±3时取到“=”,经检验此时△>0,满足题意. 综上可知,△MPQ的面积的最大值为.(12分)
复制答案
考点分析:
相关试题推荐
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,设数列{bn}的前n项和为Sn,令Tn=S2n-Sn
(Ⅰ)求数列{bn}的通项公式;   (Ⅱ)判断Tn+1,Tn(n∈N*)的大小,并说明理由.
查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)AE⊥PD判定AE与PD是否垂直,并说明理由
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为manfen5.com 满分网,求二面角E-AF-C的余弦值.

manfen5.com 满分网 查看答案
为支持2010年广洲亚运会,某班拟选派4人为志愿者参与亚运会,经过初选确定5男4女共9名同学成为候选人,每位候选人当选志愿者的机会均等.
(1)求女生1人,男生3人当选时的概率?
(2)设至少有几名男同学当选的概率为Pn,当manfen5.com 满分网时,n的最小值?
查看答案
在△ABC中,a、b、c分别为角A、B、C的对边,且C=manfen5.com 满分网,a+b=λc,(其中λ>1).
(Ⅰ)若c=λ=2时,求manfen5.com 满分网manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网(λ4+3)时,求边长c的最小值及判定此时△ABC的形状.
查看答案
若{an}是等差数列,m,n,p是互不相等的正整数,有正确的结论:(m-n)ap+(n-p)am+(p-m)an=0,类比上述性质,相应地,若等比数列{bn},m,n,p是互不相等的正整数,有    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.