满分5 > 高中数学试题 >

已知抛物线C:x2=2py(p>0)的焦点F与P(2,-1)关于直线l:x-y-...

已知抛物线C:x2=2py(p>0)的焦点F与P(2,-1)关于直线l:x-y-2=0对称,中心在坐标原点的椭圆经过两点M(1,manfen5.com 满分网),N(-manfen5.com 满分网manfen5.com 满分网),且抛物线与椭圆交于两点A(xA,yA)和B(xB,yB),且xA<xB
(1)求出抛物线方程与椭圆的标准方程;
(2)若直线l′与抛物线相切于点A,试求直线l′与坐标轴所围成的三角形的面积;
(3)若(2)中直线l′与圆x2-2mx+y2+2y+m2-manfen5.com 满分网=0恒有公共点,试求m的取值范围.
(1)设椭圆的方程为mx2+ny2=1,因为椭圆经过两点M(1,),N(-,),所以可得 由①与②消去m可得n=,由此能求出抛物线方程与椭圆的标准方程. (2)由得y2+y-2=0,解得y=1或y=-2(不合题意,舍去),当y=1时,得x=±2,因为xA<xB,所以A(-2,1),对y=x2求导,得y′=x,所以直线l′的方程为x+y+1=0,由此能求出直线l′与坐标轴所围成的三角形的面积. (3)由x2-2mx+y2+2y+m2-=0得(x-m)2+(y+1)2=,其圆心坐标为(m,-1),半径r=,要使直线l′与圆x2-2mx+y2+2y+m2-=0恒有公共点,则需满足(m,-1)到直线l′:x+y+1=0的距离d≤,由此能求出m的取值范围. 【解析】 (1)设椭圆的方程为mx2+ny2=1, 因为椭圆经过两点M(1,),N(-,), 所以可得 由①与②消去m可得n=,③ 将③代入①得m=, 故所求椭圆的标准方程为+=1. 抛物线C:x2=2py(p>0)的焦点为F(0,),依题意得直线FP与直线l:x-y-2=0互相垂直,所以直线FP的斜率为-1,则kFP==-1,解得p=2,所以x2=4y. (2)由得y2+y-2=0,解得y=1或y=-2(不合题意,舍去), 当y=1时,得x=±2,因为xA<xB,所以A(-2,1),对y=x2求导,得y′=x,所以y′|x=-2=-1,所以直线l′的方程为y-1=-1×(x+2),即x+y+1=0,令x=0得y=-1,令y=0得x=-1,所以直线l′与坐标轴所围成的三角形的面积为S=×|-1|×|-1|=. (3)由x2-2mx+y2+2y+m2-=0得(x-m)2+(y+1)2=,其圆心坐标为(m,-1),半径r=, 要使直线l′与圆x2-2mx+y2+2y+m2-=0恒有公共点,则需满足(m,-1)到直线l′:x+y+1=0的距离d≤,即d=≤,得-≤m≤, 即m的取值范围为[-,].
复制答案
考点分析:
相关试题推荐
已知等差数列{log4(an-1)}(n∈N*),且a1=5,a3=65,函数f(x)=x2-4x+4,设数列{bn}的前n项和为Sn=f(n),
(1)求数列{an}与数列{bn}的通项公式;
(2)记数列cn=(an-1)•bn,且{cn}的前n项和为Tn,求Tn
(3)设各项均不为零的数列{dn}中,所有满足dk•dk+1<0的整数k的个数称为这个数列的异号数,令dn=manfen5.com 满分网(n∈N*),试问数列{dn}是否存在异号数,若存在,请求出;若不存在,请说明理由.
查看答案
在四棱锥P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,PB=2manfen5.com 满分网,PD=4manfen5.com 满分网.E是PD的中点.
(1)求证:AE⊥平面PCD;
(2)求平面ACE与平面ABCD所成二面角的余弦值;
(3)在线段BC上是否存在点F,使得三棱锥F-ACE的体积恰为manfen5.com 满分网,若存在,试确定点F的位置;若不存在,请说明理由.
manfen5.com 满分网
查看答案
在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且满足manfen5.com 满分网sin2A+manfen5.com 满分网sin2A=cos2A,cosB=manfen5.com 满分网,b=2manfen5.com 满分网
(1)求sinC的值;
(2)求△ABC的面积.
查看答案
manfen5.com 满分网如图是一个几何体的三视图(单位:m),则几何体的体积为    查看答案
manfen5.com 满分网一个算法的程序框图如图所示,则该程序输出的结果是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.