满分5 > 高中数学试题 >

设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确...

设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是( )
①若m⊥α,n∥α,则m⊥n 
②若α∥β,β∥γ,m⊥α,则m⊥γ  
③若m∥α,n∥α,则m∥n  
④若α⊥γ,β⊥γ,则α∥β
A.①②
B.②③
C.③④
D.①④
直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,对选项进行逐一判断,推出结果即可. 【解析】 ①若m⊥α,n∥α,则m⊥n,是直线和平面垂直的判定,正确; ②若α∥β,β∥γ,m⊥α,则m⊥γ,推出α∥γ,满足直线和平面垂直的判定,正确; ③若m∥α,n∥α,则m∥n,两条直线可能相交,也可能异面,不正确. ④若α⊥γ,β⊥γ,则α∥β中m与n可能相交或异面.④考虑长方体的顶点,α与β可以相交.不正确. 故选A.
复制答案
考点分析:
相关试题推荐
复数manfen5.com 满分网在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案
(文)设a∈R,则a>1是manfen5.com 满分网<1 的( )
A.必要但不充分条件
B.充分但不必要条件
C.充要条件
D.既不充分也不必要条件
查看答案
已知点P是直角坐标平面内的动点,点P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且manfen5.com 满分网
(1)求动点P所在曲线C的方程;
(2)直线l过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线l1:x=-2的垂线,对应的垂足分别为M、N,试判断点F与以线段MN为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的点),问是否存在实数λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,请说明理由.
进一步思考问题:若上述问题中直线manfen5.com 满分网、点F(-c,0)、曲线C:manfen5.com 满分网,则使等式S22=λS1S3成立的λ的值仍保持不变.请给出你的判断______ (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).
查看答案
已知函数manfen5.com 满分网是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a>1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.
查看答案
已知函数manfen5.com 满分网,数列{an}满足 a1=a(a≠-1,a∈R),an+1=f(an)(n∈N*).
(1)若数列{an}是常数列,求a的值;
(2)当a1=4时,记manfen5.com 满分网,证明数列{bn}是等比数列,并求出通项公式an
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.