(I)根据题意,An是线段An-2An-1的中点,可得xn与xn-1、xn-2之间的关系式,
(II)由题意知a1=a,a2=-a,a3=a,由此推测:an=(-)n-1a(n∈N*)再进行证明.
(III)首先求出xn,然后根据(II)知{an}是公比为的等比数列,求出结果.
【解析】
(I)当n≥3时,
(II)a1=x2-x1=a.
由此推测.a(n∈N)
因为a1=a>0,且
=(n≥2)
所以.
(III)【解析】
当n≥3时,有xn=(xn-xn-1)+(xn-1-xn-2)+…+(x2-x1)+x1=an-1+an-2+…+a1,
由(II)知{an}是公比为的等比数列,所以.