满分5 > 高中数学试题 >

已知函数f(x)=ax2-2x+lnx. (Ⅰ)若f(x)无极值点,但其导函数f...

已知函数f(x)=ax2-2x+lnx.
(Ⅰ)若f(x)无极值点,但其导函数f'(x)有零点,求a的值;
(Ⅱ)若f(x)有两个极值点,求a的取值范围,并证明f(x)的极小值小于manfen5.com 满分网
(Ⅰ)首先,x>0利用f′(x)有零点而f(x)无极值点,表明该零点左右f′(x)同号,故△=0.由此可得即可; (Ⅱ)先由题意,2ax2-2x+1=0有两不同的正根,故△>0,解得:,再设2ax2-2x+1=0的两根为x1,x2,不妨设x1<x2,利用导数研究函数f(x)的极值点,从而得出证明. 解 (Ⅰ)首先,x>0 f′(x)有零点而f(x)无极值点,表明该零点左右f′(x)同号,故a≠0,且2ax2-2x+1=0的△=0.由此可得 (Ⅱ)由题意,2ax2-2x+1=0有两不同的正根,故△>0,a>0. 解得: 设2ax2-2x+1=0的两根为x1,x2,不妨设x1<x2, 因为在区间(0,x1),(x2,+∞)上,f′(x)>0, 而在区间(x1,x2)上,f′(x)<0,故x2是f(x)的极小值点. 因f(x)在区间(x1,x2)上f(x)是减函数,如能证明,则更有 由韦达定理,, 令,其中设, 利用导数容易证明g(t)当t>1时单调递减,而g(1)=0, ∴g(t)=lnt- t+<0, 因此f()<-, 从而有f(x)的极小值f(x2)<-.
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的前n项和为Sn,且(2n-1)Sn+1-(2n+1)Sn=4n2-1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:manfen5.com 满分网
查看答案
己知三棱柱ABC-A1B1C1,A1在底面ABC上的射影恰为AC的中点D,∠BCA=90°,AC=BC=2,又知BA1⊥AC1
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求点C到平面A1AB的距离;
(Ⅲ)求二面角A-A1B-C余弦值的大小.

manfen5.com 满分网 查看答案
小白鼠被注射某种药物后,只会表现为以下三种症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝.若出现三种症状的概率依次为manfen5.com 满分网,现对三只小白鼠注射这种药物.
(I)求这三只小白鼠表现症状互不相同的概率;
(II)用ξ表示三只小白鼠共表现症状的种数,求ξ的颁布列及数学期望.
查看答案
已知manfen5.com 满分网,其中a,b,x∈R.若manfen5.com 满分网满足manfen5.com 满分网,且f(x)的导函数f'(x)的图象关于直线manfen5.com 满分网对称.
(Ⅰ)求a,b的值;
(Ⅱ)若关于x的方程f(x)+log2k=0在区间manfen5.com 满分网上总有实数解,求实数k的取值范围.
查看答案
已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.