设函数f(x)=|x
2-4x-5|.
(1)在区间[-2,6]上画出函数f(x)的图象;
(2)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).试判断集合A和B之间的关系(要写出判断过程);
(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k的图象位于函数f(x)图象的上方.
考点分析:
相关试题推荐
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案
已知定义在区间
上的函数y=f(x)的图象关于直线
对称,当
时,函数f(x)=sinx.
(Ⅰ)求
,
的值;
(Ⅱ)求y=f(x)的函数表达式;
(Ⅲ)如果关于x的方程f(x)=a有解,那么将方程在a取某一确定值时所求得的所有解的和记为M
a,求M
a的所有可能取值及相对应的a的取值范围.
查看答案
设函数f(x)对任意x、y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0.
(1)证明:f(x)为奇函数;
(2)证明:f(x)在R上为减函数.
查看答案
若函数f(x)=a-bsinx的最大值为
,最小值为
,求函数y=1-asinbx的单调区间和周期.
查看答案
已知函数
,
(1)判断函数的单调性,并用定义证明;
(2)求函数的最大值和最小值.
查看答案