(I)由已知中,f(x)=,我们根据平面向量数量积公式,可以得到函数的解析式,(含参数a,b),进而根据f()=2,且f(x)的图象关于直线x=对称.我们可以构造关于a,b的方程,解方程即可求出a,b的值.
(II)若关于x的方程f(x)+log2k=0在区间[0,]上总有实数解,我们可以求出函数f(x)在区间[0,]上的值域,构造一个对数不等式,解不等式即可求出实数k的取值范围.
【解析】
(Ⅰ)=
由得,①
∵f(x)的图象关于对称,∴∴②
由①、②得,
(Ⅱ)由(Ⅰ)得=
∵,,
∴,f(x)∈[0,3].
又∵f(x)+log2k=0有解,即f(x)=-log2k有解,
∴-3≤log2k≤0,解得,即.