对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.
考点分析:
相关试题推荐
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(1)求证:DC⊥平面ABC;
(2)设CD=a,求三棱锥A-BFE的体积.
查看答案
已知
,其中a,b,x∈R.若f(x)=
满足f(
)=2,且f(x)的图象关于直线x=
对称.
(Ⅰ)求a,b的值;
(Ⅱ)若关于x的方程f(x)+log
2k=0在区间[0,
]上总有实数解,求实数k的取值范围.
查看答案
已知方程|2
x-1|-|2
x+1|=a+1有实数解,则a的取值范围为
.
查看答案
直三棱柱ABC-A
1B
1C
1的各顶点都在同一球面上,若AB=AC=AA
1=2,∠BAC=120°,则此球的表面积等于
.
查看答案
定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,
则f(log
220)=
.
查看答案