满分5 > 高中数学试题 >

(选做题) 在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l...

(选做题)
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+manfen5.com 满分网)=manfen5.com 满分网,圆C的参数方程为manfen5.com 满分网,(θ为参数,r>0)
(I)求圆心C的极坐标;
(II)当r为何值时,圆C上的点到直线l的最大距离为3.
(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系, 消去θ可得曲线C的普通方程,得出圆心的直角坐标后再化面极坐标即可. (2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值,最后列出关于r的方程即可求出r值. 【解析】 (1)由 ρsin(θ+)=,得   ρ(cosθ+sinθ)=,∴直线l:x+y-1=0. 由 得C:圆心(-,-). ∴圆心C的极坐标(1,). (2)在圆C:的圆心到直线l的距离为: ∵圆C上的点到直线l的最大距离为3, ∴. r=2- ∴当r=2-时,圆C上的点到直线l的最大距离为3.
复制答案
考点分析:
相关试题推荐
选修4-1:平面几何
如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
(1)求证:△ABE≌△ACD;
(2)若AB=6,BC=4,求AE.

manfen5.com 满分网 查看答案
已知函数f(x)=alnx-ax-3(a∈R).
(I)当a=1时,求函数f(x)的单调区间;
(II)若函数y=f(x)的图象在点(2,f(x))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[manfen5.com 满分网+f(x)]在区间(t,3)上总存在极值?
(III)当a=2时,设函数h(x)=(p-2)x+manfen5.com 满分网-3,若对任意的x∈[1,2],f(x)≥h(x)恒成立,求实数P的取值范围.
查看答案
已知圆c1:(x+1)2+y2=8,点c2(1,0),点Q在圆C1上运动,QC2的垂直一部分线交QC1于点P.
(I)求动点P的轨迹W的方程;
(II)过点S(0,-manfen5.com 满分网)且斜率为k的动直线l交曲线W于A、B两点,在y轴上是否存在定点D,使以AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.
查看答案
如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(II)当BC边上有且仅有一个点Q使得PQ⊥OD时,求二面角Q-PD-A的余弦值大小.

manfen5.com 满分网 查看答案
形状如右图所示的三个游戏盘中(图a是正方形,图b是半径之比为1:2的两个同心圆,圆c是正六边形),各有一个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏.
(I)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?
(II)用随机变量ξ表示一局游戏后,小球停在阴影部分的事件数与小球没有停在阴影部分的事件数之差的绝对值,求随机变量ξ的分布列及数学期望.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.