满分5 > 高中数学试题 >

设上的两点,已知,,若且椭圆的离心率,短轴长为2,O为坐标原点. (1)求椭圆的...

manfen5.com 满分网上的两点,已知manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网且椭圆的离心率manfen5.com 满分网,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值.
(1)利用椭圆的离心率的公式及椭圆中三个参数的关系:a2=b2+c2,列出方程求出参数a,b,c的值,代入椭圆方程即可. (2)设出直线AB的方程,将直线方程与椭圆的方程联立,得到关于x的二次方程,利用韦达定理得到交点的横坐标间的关系;利用已知向量垂直其数量积为0得到两个交点间的另外的等量关系,联立求出k的值. 【解析】 (1) 椭圆的方程为 (2)由题意,设AB的方程为 由已知得: =, 解得
复制答案
考点分析:
相关试题推荐
某科技公司遇到一个技术难题,紧急成立甲、乙两个攻关小组,按要求各自单独进行为期一个月的技术攻关,同时决定对攻关期满就攻克技术难题的小组给予奖励.已知此技术难题在攻关期满时被甲小组攻克的概率为manfen5.com 满分网,被乙小组攻克的概率为manfen5.com 满分网
(1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及Eξ;
(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数f(x)=|η-manfen5.com 满分网|x在定义域内单调递减”为事件C,求事件C的概率.
查看答案
一个多面体的直观图和三视图如图所示manfen5.com 满分网
(1)求证:PA⊥BD;
(2)是否在线段PD上存在一Q点,使二面角Q-AC-D的平面角为30°,设manfen5.com 满分网,若存在,求λ;若不存在,说明理由.
查看答案
已知manfen5.com 满分网manfen5.com 满分网,O为坐标原点,a≠0,设manfen5.com 满分网,b>a.
(I)若a>0,写出函数y=f(x)的单调递增区间;
(II)若函数y=f(x)的定义域为manfen5.com 满分网,值域为[2,5],求实数a与b的值.
查看答案
下列正确结论的序号是   
①命题∀x,x2+x+1>0的否定是:∃x,x2+x+1<0.
②命题“若ab=0,则a=0,或b=0”的否命题是“若ab≠0,则a≠0且b≠0”
③若函数f(x-1)的图象关于点(1,0)对称,则f(x)是奇函数;
④函数y=f(x+1)与函数y=f(1-x)的图象关于直线x=1对称. 查看答案
已知P为圆x2+(y-1)2=1上任意一点,直线OP的倾斜角为θ弧度,O为坐标原点,记d=|OP|,以(θ,d)为坐标的点的轨迹为C,则曲线C与x轴围成的封闭图形的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.