满分5 > 高中数学试题 >

已知全集U=R,集合A={x|x2-2x>0},B={x|y=lg(x-1)},...

已知全集U=R,集合A={x|x2-2x>0},B={x|y=lg(x-1)},则(CuA)∩B等于( )
A.{x|x>2或x<0}
B.{x|1<x<2}
C.{x|1≤x≤2}
D.{x|1<x≤2}
求出集合A中的一元二次不等式的解集,确定出集合A,由全集R,求出集合A的补集,然后求出集合B中对数函数的定义域确定出集合B,求出集合A补集与集合B的交集即可. 【解析】 由集合A中的不等式x2-2x>0, 因式分解得:x(x-2)>0, 解得:x>2或x<0,所以集合A={x|x>2或x<0},又全集U=R, ∴CuA={x|0≤x≤2}, 又根据集合B中的对数函数可得:x-1>0,解得x>1, 所以集合B={x|x>1}, 则(CuA)∩B={x|1<x≤2}. 故选D
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求g(x)在x∈[-1,1]上的最大值;
(2)若g(x)≤t2+λt+1对∀x∈[-1,1]及λ∈(-∞,-1]恒成立,求t的取值范围;
(3)讨论关于x的方程manfen5.com 满分网的根的个数.
查看答案
已知椭圆manfen5.com 满分网=1(a>b>0)的离心率e=manfen5.com 满分网,左、右焦点分别为F1、F2,点manfen5.com 满分网,点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,求证:直线l过定点,并求该定点的坐标.
查看答案
如图,是某三棱柱被截去一部分后的直观图与三视图的侧视图、俯视图,在直观图中,CF=2AD,M是DF的中点.侧视图是边长为2的等边三角形;俯视图是直角梯形,.有关数据如图所示.
manfen5.com 满分网
(1)求该几何体的体积;
(2)求证:EM⊥平面ACDF.
查看答案
在△ABC中,角A、B、C的对边分别为a.b.c,且manfen5.com 满分网manfen5.com 满分网,BC边上中线AM的长为manfen5.com 满分网
(Ⅰ)求角A和角B的大小;
(Ⅱ)求△ABC的面积.
查看答案
下列说法正确的是     .(写出所有正确说法的序号)
①若p是q的充分不必要条件,则¬p是¬q的必要不充分条件;
②命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1<3x”;
③设x,y∈R.命题“若xy=0,则x2+y2=0”的否命题是真命题;
④若manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.