满分5 > 高中数学试题 >

证明: (1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2, (2)已...

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:manfen5.com 满分网
(1)用比较法证明不等式,(x3+y3 )-(x2y+xy2)=(x+y)(x-y)2,分析符号可得结论. (2)由题意得,1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤3(a2+b2+c2),结论得证. 证明:(1)∵(x3+y3 )-(x2y+xy2)=x2 (x-y)+y2(y-x)=(x-y)(x2-y2 ) =(x+y)(x-y)2. ∵x,y都是正实数,∴(x-y)2≥0,(x+y)>0,∴(x+y)(x-y)2≥0, ∴x3+y3≥x2y+xy2. (2)∵a,b,c∈R+,且a+b+c=1,∴1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac ≤3(a2+b2+c2),∴a2+b2+c2≥,当且仅当a=b=c 时,等号成立.
复制答案
考点分析:
相关试题推荐
(选做题)
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+manfen5.com 满分网)=manfen5.com 满分网,圆C的参数方程为manfen5.com 满分网,(θ为参数,r>0)
(I)求圆心C的极坐标;
(II)当r为何值时,圆C上的点到直线l的最大距离为3.
查看答案
选修4-1:平面几何
如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
(1)求证:△ABE≌△ACD;
(2)若AB=6,BC=4,求AE.

manfen5.com 满分网 查看答案
已知函数f(x)=alnx-ax-3(a∈R).
(I)当a=1时,求函数f(x)的单调区间;
(II)若函数y=f(x)的图象在点(2,f(x))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[manfen5.com 满分网+f(x)]在区间(t,3)上总存在极值?
(III)当a=2时,设函数h(x)=(p-2)x+manfen5.com 满分网-3,若对任意的x∈[1,2],f(x)≥h(x)恒成立,求实数P的取值范围.
查看答案
已知圆c1:(x+1)2+y2=8,点c2(1,0),点Q在圆C1上运动,QC2的垂直一部分线交QC1于点P.
(I)求动点P的轨迹W的方程;
(II)过点S(0,-manfen5.com 满分网)且斜率为k的动直线l交曲线W于A、B两点,在y轴上是否存在定点D,使以AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.
查看答案
如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(II)当BC边上有且仅有一个点Q使得PQ⊥OD时,求二面角Q-PD-A的余弦值大小.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.