满分5 > 高中数学试题 >

如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点...

manfen5.com 满分网如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:
(1)直线EF∥面ACD;
(2)平面EFC⊥面BCD.
(1)根据线面平行关系的判定定理,在面ACD内找一条直线和直线EF平行即可,根据中位线可知EF∥AD,EF⊄面ACD,AD⊂面ACD,满足定理条件; (2)需在其中一个平面内找一条直线和另一个面垂直,由线面垂直推出面面垂直,根据线面垂直的判定定理可知BD⊥面EFC,而BD⊂面BCD,满足定理所需条件. 证明:(1)∵E,F分别是AB,BD的中点. ∴EF是△ABD的中位线,∴EF∥AD, ∵EF⊄面ACD,AD⊂面ACD,∴直线EF∥面ACD; (2)∵AD⊥BD,EF∥AD,∴EF⊥BD, ∵CB=CD,F是BD的中点,∴CF⊥BD 又EF∩CF=F,∴BD⊥面EFC, ∵BD⊂面BCD,∴面EFC⊥面BCD
复制答案
考点分析:
相关试题推荐
在△ABC中,角A的对边长等于2,向量manfen5.com 满分网=manfen5.com 满分网,向量manfen5.com 满分网=manfen5.com 满分网
(1)求manfen5.com 满分网manfen5.com 满分网取得最大值时的角A的大小;
(2)在(1)的条件下,求△ABC面积的最大值.
查看答案
已知l1和l2是平面内互相垂直的两条直线,它们的交点为A,动点B、C分别在l1和l2上,且manfen5.com 满分网,过A、B、C三点的动圆所形成的区域的面积为     查看答案
设函数manfen5.com 满分网,A为坐标原点,An为函数y=f(x)图象上横坐标为n(n∈N*)的点,向量manfen5.com 满分网,向量i=(1,0),设θn为向量an与向量i的夹角,则满足manfen5.com 满分网的最大整数n是    查看答案
设A、B是椭圆manfen5.com 满分网上不同的两点,点C(-3,0),若A、B、C共线,则manfen5.com 满分网的取值范围是    查看答案
设函数f(x)=ax+b,其中a,b为实数,f1(x)=f(x),fn+1(x)=f[fn(x)],n=1,2,….若f5(x)=32x+93,则ab=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.