满分5 > 高中数学试题 >

已知函数,(x∈R,p1,p2为常数).函数f(x)定义为:对每个给定的实数x,...

已知函数manfen5.com 满分网manfen5.com 满分网(x∈R,p1,p2为常数).函数f(x)定义为:对每个给定的实数x,manfen5.com 满分网
(1)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);
(2)设a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为manfen5.com 满分网(闭区间[m,n]的长度定义为n-m)
(1)根据题意,先证充分性:由f(x)的定义可知,f(x)=f1(x)对所有实数成立,等价于f1(x)≤f2(x)对所有实数x成立等价于,即对所有实数x均成立,分析容易得证;再证必要性:对所有实数x均成立等价于,即|p1-p2|≤log32, (2)分两种情形讨论:①当|p1-p2|≤log32时,由中值定理及函数的单调性得到函数f(x)在区间[a,b]上的单调增区间的长度;②当|p1-p2|>log32时,a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),根据图象和函数的单调性得到函数f(x)在区间[a,b]上的单调增区间的长度. 【解析】 (1)由f(x)的定义可知,f(x)=f1(x)(对所有实数x)等价于f1(x)≤f2(x)(对所有实数x)这又等价于,即对所有实数x均成立.(*) 由于|x-p1|-|x-p2|≤|(x-p1)-(x-p2)|=|p1-p2|(x∈R)的最大值为|p1-p2|, 故(*)等价于,即|p1-p2|≤log32,这就是所求的充分必要条件 (2)分两种情形讨论 (i)当|p1-p2|≤log32时,由(1)知f(x)=f1(x)(对所有实数x∈[a,b]) 则由f(a)=f(b)及a<p1<b易知, 再由的单调性可知, 函数f(x)在区间[a,b]上的单调增区间的长度 为(参见示意图) (ii)|p1-p2|>log32时,不妨设p1<p2,,则p2-p1>log32,于是 当x≤p1时,有,从而f(x)=f1(x); 当x≥p2时,有 从而f(x)=f2(x);当p1<x<p2时,,及,由方程 解得f1(x)与f2(x)图象交点的横坐标为(1) 显然, 这表明x在p1与p2之间.由(1)易知 综上可知,在区间[a,b]上,(参见示意图) 故由函数f1(x)及f2(x)的单调性可知,f(x)在区间[a,b]上的单调增区间的长度之和为(x-p1)+(b-p2),由于f(a)=f(b),即,得p1+p2=a+b+log32(2) 故由(1)、(2)得 综合(i)(ii)可知,f(x)在区间[a,b]上的单调增区间的长度和为.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且过点Pn(n,Sn)的切线的斜率为kn
(1)求数列{an}的通项公式.
(2)若manfen5.com 满分网,求数列{bn}的前n项和Tn
(3)设Q={x|x=kn,n∈N*},R={x|x=2an,n∈N*},等差数列{cn}的任一项cn∈Q∩R,其中c1是Q∩R中的最小数,110<c10<115,求{cn}的通项公式.
查看答案
如图,已知椭圆C:manfen5.com 满分网,经过椭圆C的右焦点F且斜率为k(k≠0)的直线l交椭圆G于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.
(1)是否存在k,使对任意m>0,总有manfen5.com 满分网成立?若存在,求出所有k的值;
(2)若manfen5.com 满分网,求实数k的取值范围.
manfen5.com 满分网
查看答案
按照某学者的理论,假设一个人生产某产品单件成本为a元,如果他卖出该产品的单价为m元,则他的满意度为manfen5.com 满分网;如果他买进该产品的单价为n元,则他的满意度为manfen5.com 满分网.如果一个人对两种交易(卖出或买进)的满意度分别为h1和h2,则他对这两种交易的综合满意度为manfen5.com 满分网.现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为mA元和mB元,甲买进A与卖出B的综合满意度为h,乙卖出A与买进B的综合满意度为h
(1)求h和h关于mA、mB的表达式;当manfen5.com 满分网时,求证:h=h
(2)设manfen5.com 满分网,当mA、mB分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?
(3)记(2)中最大的综合满意度为h,试问能否适当选取mA,mB的值,使得h≥h和h≥h同时成立,但等号不同时成立?试说明理由.
查看答案
manfen5.com 满分网如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:
(1)直线EF∥面ACD;
(2)平面EFC⊥面BCD.
查看答案
在△ABC中,角A的对边长等于2,向量manfen5.com 满分网=manfen5.com 满分网,向量manfen5.com 满分网=manfen5.com 满分网
(1)求manfen5.com 满分网manfen5.com 满分网取得最大值时的角A的大小;
(2)在(1)的条件下,求△ABC面积的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.