满分5 > 高中数学试题 >

已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平...

已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l交椭圆于A、B两点.
(1)求椭圆的方程;
(2)已知manfen5.com 满分网,是否对任意的正实数t,λ,都有manfen5.com 满分网成立?请证明你的结论.
(1)设出椭圆的方程,根据长轴长是短轴长的2倍求得a和b的关系,把点M代入椭圆的方程求得a和b的另一关系式,联立求得a和b,则椭圆的方程可得. (2)根据推断出与x轴垂直,进而根据菱形的几何性质知,∠AMB的平分线应与x轴垂直,问题转化为求直线MA,MB的倾斜角是否互补,设出直线l的方程,与椭圆方程联立消去y,设直线MA、MB的斜率分别为k1,k2,设出A,B的坐标,根据韦达定理表示出x1+x2和x1x2,进而表示出k1和k2,求得k1+k2=0,推断出直线MA,MB的倾斜角互补,进而证明题设. 【解析】 (1)设椭圆方程为 则, ∴椭圆方程. (2)若成立,则向量与x轴垂直, 由菱形的几何性质知,∠AMB的平分线应与x轴垂直.为此只需考察直线MA,MB的倾斜角是否互补即可. 由已知,设直线l的方程为: 由,∴ 设直线MA、MB的斜率分别为k1,k2, 只需证明k1+k2=0即可, 设 由x2+2mx+2m2-4=0可得, x1+x2=-2m,x1x2=2m2-4,而 = = = =, ∴k1+k2=0, 直线MA,MB的倾斜角互补. 故对任意的正实数t,λ,都有成立.
复制答案
考点分析:
相关试题推荐
有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.若用(m,n)表示小明取球时m与n的对应值,
求关于x的一元二次方程x2-mx+manfen5.com 满分网n=0有实数根的概率.
查看答案
在△ABC中,角A、B、C的对边分别为a,b,c,且满足manfen5.com 满分网
(1)求角B的大小;
(2)若manfen5.com 满分网,求△ABC面积的最大值.
查看答案
口袋中有1个红球、2个黄球、3个白球、3个黑球共9个球,从中任取3个球.
(1)求取出的球的颜色不全相同的概率;
(2)记ξ为取出的球的颜色的种数,求随机变量ξ的数学期望Eξ.
查看答案
已知函数f(x)=|x-a|+|x+a|+|x-b|+|x+b|-c,若存在正常数m,使f(m)=0,则不等式f(x)<f(m)的解集是    查看答案
如果实数x,y满足条件manfen5.com 满分网,则manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.