满分5 > 高中数学试题 >

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=...

已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2.
(Ⅰ)求a,b的值;
(Ⅱ)若方程f(x)+m=0在manfen5.com 满分网内有两个不等实根,求m的取值范围(其中e为自然对数的底数);
(Ⅲ)令g(x)=f(x)-kx,若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),AB的中点为C(x,0),求证:g(x)在x处的导数g′(x)≠0.
(Ⅰ)只需要利用导数的几何意义即可获得两个方程解得两个未知数; (Ⅱ)先要利用导数研究好函数h(x)=f(x)+m=2lnx-x2+m,的单调性,结合单调性及在内有两个不等实根通过数形结合易知m满足的关系从而问题获得解答; (Ⅲ)用反证法现将问题转化为有关方程根的形式,在通过研究函数的单调性进而通过最值性找到矛盾即可获得解答. 【解析】 (Ⅰ)f′(x)=-2bx,,f(2)=aln2-4b. ∴,且aln2-4b=-6+2ln2+2. 解得a=2,b=1. (Ⅱ)f(x)=2lnx-x2,令h(x)=f(x)+m=2lnx-x2+m, 则, 令h′(x)=0,得x=1(x=-1舍去). 在内, 当时,h′(x)>0, ∴h(x)是增函数; 当x∈[1,e]时,h′(x)<0, ∴h(x)是减函数, 则方程h(x)=0在内有两个不等实根的充要条件是: 即. (Ⅲ)g(x)=2lnx-x2-kx,. 假设结论成立,则有: ①-②,得. ∴. 由④得, ∴ 即,即.⑤ 令,(0<t<1), 则>0. ∴u(t)在0<t<1上增函数, ∴u(t)<u(1)=0, ∴⑤式不成立,与假设矛盾. ∴g'(x)≠0.
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,(m∈N*,m为常数,m≠3);
(1)求an
(2)若数列{an}的公比q=f(m),数列{bn}满足manfen5.com 满分网,求证:manfen5.com 满分网为等差数列,并求bn
(3)设数列{cn}满足cn=bn•bn+2,Tn为数列{cn}的前n项和,且存在实数T满足Tn≥T,(n∈N*),求T的最大值.
查看答案
椭圆manfen5.com 满分网的一个焦点是F(1,0),已知椭圆短轴的两个三等分点与一个焦点构成正三角形.
(1)求椭圆的标准方程;
(2)已知Q(x,y)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标.
查看答案
某校组织的一次篮球定点投篮比赛,其中甲、乙、丙三人投篮命中率分别是manfen5.com 满分网(0<a<1),三人各投一次,用ξ表示三人投篮命中的个数.
(1)求ξ的分布列及数学期望;
(2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求实数a的取值范围.
查看答案
manfen5.com 满分网如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB>1,点E在棱AB上移动,小蚂蚁从点A沿长方体的表面爬到点C1,所爬的最短路程为2manfen5.com 满分网
(1)求证:D1E⊥A1D;
(2)求AB的长度;
(3)在线段AB上是否存在点E,使得二面角D1-EC-D的大小为manfen5.com 满分网.若存在,确定点E的位置;若不存在,请说明理由.
查看答案
已知函数manfen5.com 满分网
(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sinα、
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.