满分5 > 高中数学试题 >

从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n...

从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有manfen5.com 满分网种取法.在这manfen5.com 满分网种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是取出m-1个白球,1个黑球,共有manfen5.com 满分网,即有等式:manfen5.com 满分网成立.试根据上述思想化简下列式子:manfen5.com 满分网=    .(1≤k<m≤n,k,m,m∈N).
从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有Cn+1m种取法.在这Cn+1m种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是,取出1个黑球,m-1个白球,则Cnm+Cnm-1=Cn+1m根据上述思想,在式子:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故答案应为:从从装有n+k球中取出m个球的不同取法数,根据排列组合公式,易得答案. 【解析】 在Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中, 从第一项到最后一项分别表示: 从装有n个白球,k个黑球的袋子里, 取出m个球的所有情况取法总数的和, 故答案应为:从从装有n+k球中取出m个球的不同取法数Cn+km 故选Cn+km
复制答案
考点分析:
相关试题推荐
等比数列{an}中,已知a1+a2+a3=8,a1+a2+…+a6=7,则公比q=    查看答案
(理科做)等比数列{an}中,已知a1+a2+a3=8,a1+a2+…+a6=7,记Sn=a1+a2+…+an,则manfen5.com 满分网=    查看答案
已知A(2,-1),B(-1,1),O为坐标原点,动点M满足manfen5.com 满分网,其中m,n∈R且2m2-n2=2,则M的轨迹方程为    查看答案
不等式manfen5.com 满分网的解集是    查看答案
manfen5.com 满分网如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧manfen5.com 满分网的长为l,弦AP的长为d,则函数d=f(l)的图象大致为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.