满分5 > 高中数学试题 >

(理科做)已知函数f(x)=x3+ax+b定义在区间[-1,1]上,且f(0)=...

(理科做)已知函数f(x)=x3+ax+b定义在区间[-1,1]上,且f(0)=f(1).又P、Q是其图象上任意两点(x1≠x2).
(1)求证:f(x)的图象关于点(0,b)成中心对称图形;
(2)设直线PQ的斜率为k,求证:|k|<2;
(3)若0≤x1<x2≤1,求证:|y1-y2|<1.
(1)由于f(0)=f(1)得到b=1+a+b得a=-1,得出f(x)=x3-x+b的图象可由y=x3-x的图象向上(或下)平移b(或-b)个单位二得到. 又y=x3-x是奇函数,其图象关于原点成中心对称图形,最后得出f(x)的图象关于点(0,b)成中心对称图形.  (2)先由点P(x1,y1)、Q(x2,y2)在f(x)=x3-x+b的图象上.. 又x1、x2∈[-1,1],利用不等式的性质即可证得|k|=|x12+x22+x1x2-1|<2 (3)根据0≤x1<x2≤1,且|y1-y2|<2|x1-x2|=-2(x1-x2),又|y1-y2|=|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|利用绝对值不等式的性质即可证得|y1-y2|<1. 【解析】 (1)f(0)=f(1),∴b=1+a+b得a=-1.(1分) f(x)=x3-x+b的图象可由y=x3-x的图象向上(或下)平移b(或-b)个单位二得到.                                                                 (3分) 又y=x3-x是奇函数,其图象关于原点成中心对称图形,f(x)的图象关于点(0,b)成中心对称图形.                                                         (5分) (2)∵点P(x1,y1)、Q(x2,y2)在f(x)=x3-x+b的图象上,.           (7分) 又x1、x2∈[-1,1],x1≠x2∵0<x12+x22+x1x2<3,从而-1<x12+x22+x1x2-1<2 ∴|k|=|x12+x22+x1x2-1|<2                                     (11分) (3)∵0≤x1<x2≤1,且|y1-y2|<2|x1-x2|=-2(x1-x2),① 又|y1-y2|=|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f(x2)|≤2|x1-0|+2|x2-1|=2(x1-0)+2(1-x2)=2(x1-x2)+2② ①+②得2|y1-y2|<2,故|y1-y2|<1(14分)
复制答案
考点分析:
相关试题推荐
如图,A1、A2为圆x2+y2=1与x轴的两个交点,P1P2为垂直于x轴的弦,且A1P1与A2P2的交点为M.
(1)求动点M的轨迹方程;
(2)记动点M的轨迹为曲线E,若过点A(0,1)的直线l与曲线E交于y轴右边不同两点C、B,且manfen5.com 满分网,求直线l的方程.

manfen5.com 满分网 查看答案
在三棱柱ABC-A′B′C′中,侧面CBB′C′⊥底面ABC,∠B′BC=60°,
∠ACB=90°,且CB=CC′=CA.
(1)求证:平面AB′C⊥平面A′C′B;
(2)求异面直线A′B与AC′所成的角.

manfen5.com 满分网 查看答案
已知等差数列{an}中,a1=1,前10项和S10=100.
(1)求数列{an}的通项公式;
(2)设an=log2bn,问{bn}是否为等比数列,并说明理由.
查看答案
在某次空战中,甲机先向乙机开火,击落乙机的概率时0.2;若乙机未被击落,就进行还击,击落甲机的概率时0.3;若甲机未被击落,则再进攻乙机,击落乙机的概率时0.4,求在这个三个回合中:
(1)甲机被击落的概率;
(2)乙机被击落的概率.
查看答案
一个口袋内有5个白球和3个黑球,任意取出一个,如果是黑球,则这个黑球不放回且另外放入一个白球,这样继续下去,直到取出的球是白球为止.求取到白球所需的次数ξ的概率分布列及期望.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.