满分5 > 高中数学试题 >

已知函数f(x)=-x3+ax2+bx+c图象上的点P(1,-2)处的切线方程为...

已知函数f(x)=-x3+ax2+bx+c图象上的点P(1,-2)处的切线方程为y=-3x+1.
(1)若函数f(x)在x=-2时有极值,求f(x)的表达式
(2)若函数f(x)在区间[-2,0]上单调递增,求实数b的取值范围.
(1)对函数f(x)求导,由题意点P(1,-2)处的切线方程为y=-3x+1,可得f′(1)=-3,再根据f(1)=-1,又由f′(-2)=0联立方程求出a,b,c,从而求出f(x)的表达式. (2)由题意函数f(x)在区间[-2,0]上单调递增,对其求导可得f′(x)在区间[-2,0]大于或等于0,从而求出b的范围. 【解析】 f′(x)=-3x2+2ax+b,(2分) 因为函数f(x)在x=1处的切线斜率为-3, 所以f′(1)=-3+2a+b=-3,即2a+b=0,(3分) 又f(1)=-1+a+b+c=-2得a+b+c=-1.(4分) (1)函数f(x)在x=-2时有极值,所以f'(-2)=-12-4a+b=0,(5分) 解得a=-2,b=4,c=-3,(7分) 所以f(x)=-x3-2x2+4x-3.(8分) (2)因为函数f(x)在区间[-2,0]上单调递增,所以导函数f′(x)=-3x2-bx+b 在区间[-2,0]上的值恒大于或等于零,(10分) 则得b≥4,所以实数b的取值范围为[4,+∞)(14分)
复制答案
考点分析:
相关试题推荐
(理科做)已知函数f(x)=x3+ax+b定义在区间[-1,1]上,且f(0)=f(1).又P、Q是其图象上任意两点(x1≠x2).
(1)求证:f(x)的图象关于点(0,b)成中心对称图形;
(2)设直线PQ的斜率为k,求证:|k|<2;
(3)若0≤x1<x2≤1,求证:|y1-y2|<1.
查看答案
如图,A1、A2为圆x2+y2=1与x轴的两个交点,P1P2为垂直于x轴的弦,且A1P1与A2P2的交点为M.
(1)求动点M的轨迹方程;
(2)记动点M的轨迹为曲线E,若过点A(0,1)的直线l与曲线E交于y轴右边不同两点C、B,且manfen5.com 满分网,求直线l的方程.

manfen5.com 满分网 查看答案
在三棱柱ABC-A′B′C′中,侧面CBB′C′⊥底面ABC,∠B′BC=60°,
∠ACB=90°,且CB=CC′=CA.
(1)求证:平面AB′C⊥平面A′C′B;
(2)求异面直线A′B与AC′所成的角.

manfen5.com 满分网 查看答案
已知等差数列{an}中,a1=1,前10项和S10=100.
(1)求数列{an}的通项公式;
(2)设an=log2bn,问{bn}是否为等比数列,并说明理由.
查看答案
在某次空战中,甲机先向乙机开火,击落乙机的概率时0.2;若乙机未被击落,就进行还击,击落甲机的概率时0.3;若甲机未被击落,则再进攻乙机,击落乙机的概率时0.4,求在这个三个回合中:
(1)甲机被击落的概率;
(2)乙机被击落的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.