满分5 > 高中数学试题 >

已知数列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n...

已知数列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n∈N*).
(1)求证:数列{an+1-pan}为等比数列;
(2)数列{an}中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设A={(n,bn)|bn=3n+kn,n∈N*},其中k为常数,且k∈N*,B={(n,cn)|cn=5n,n∈N*},求A∩B.
(1)根据an=pn+λqn可得an+1-pan的表达式,整理可得为常数,进而可判断数列{an+1-pan}为等比数列. (2)取数列{an}的连续三项an,an+1,an+2把an=pn+λqn代入an+12-anan+2整理可知结果不为0,进而可判断an+12≠anan+2,即数列{an}中不存在连续三项构成等比数列; (3)由3n+2n=5n整理得,设则可知f(x)为减函数,故可判定f(x)=1的解只有一个,从而当且仅当n=1,3n+2n=5n成立,同样的道理可证当k=1,k=3或k≥5时,B∩C=∅;当k=2时,B∩C={(1,5)},当k=4时,B∩C={(2,25)}. 【解析】 (1)∵an=pn+λqn, ∴an+1-pan=pn+1+λqn+1-p(pn+λqn)=λqn(q-p), ∵λ≠0,q>0,p≠q ∴为常数 ∴数列{an+1-pan}为等比数列 (2)取数列{an}的连续三项an,an+1,an+2(n≥1,n∈N*), ∵an+12-anan+2=(pn+1+λqn+1)2-(pn+λqn)(pn+2+λqn+2)=-λpnqn(p-q)2, ∵p>0,q>0,p≠q,λ≠0, ∴-λpnqn(p-q)2≠0,即an+12≠anan+2, ∴数列{an}中不存在连续三项构成等比数列; (3)当k=1时,3n+kn=3n+1<5n,此时B∩C=∅; 当k=3时,3n+kn=3n+3n=2•3n为偶数;而5n为奇数,此时B∩C=∅; 当k≥5时,3n+kn>5n,此时B∩C=∅; 当k=2时,3n+2n=5n,发现n=1符合要求, 下面证明唯一性(即只有n=1符合要求). 由3n+2n=5n得, 设,则是R上的减函数, ∴f(x)=1的解只有一个 从而当且仅当n=1时, 即3n+2n=5n,此时B∩C={(1,5)}; 当k=4时,3n+4n=5n,发现n=2符合要求, 下面同理可证明唯一性(即只有n=2符合要求). 从而当且仅当n=2时, 即3n+4n=5n,此时B∩C={(2,25)}; 综上,当k=1,k=3或k≥5时,B∩C=∅; 当k=2时,B∩C={(1,5)}, 当k=4时,B∩C={(2,25)}.
复制答案
考点分析:
相关试题推荐
已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=manfen5.com 满分网.若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为manfen5.com 满分网,求m的值.
查看答案
manfen5.com 满分网已知圆C:x2+y2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有manfen5.com 满分网为一常数,试求所有满足条件的点B的坐标.
查看答案
某地区共有100户农民从事蔬菜种植,据调查,每户年均收入为3万元.为了调整产业结构,当地政府决定动员部分种植户从事蔬菜加工.据估计,如果能动员x(x>0)户农民从事蔬菜加工,那么剩下从事蔬菜种植的农民每户年均收入有望提高2x%,从事蔬菜加工的农民每户年均收入为manfen5.com 满分网(a>0)万元.
(1)在动员x户农民从事蔬菜加工后,要使从事蔬菜种植的农民的年总收入不低于动员前从事蔬菜种植的年总收入,试求x的取值范围;
(2)在(1)的条件下,要使这100户农民中从事蔬菜加工农民的年总收入始终不高于从事蔬菜种植农民的年总收入,试求实数a的最大值.
查看答案
manfen5.com 满分网如图,平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:BD⊥平面CDE.
查看答案
已知在等边三角形ABC中,点P为线段AB上一点,且manfen5.com 满分网
(1)若等边三角形边长为6,且manfen5.com 满分网,求manfen5.com 满分网
(2)若manfen5.com 满分网,求实数λ的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.