满分5 > 高中数学试题 >

设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+...

设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是     .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是    
根据“存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数”的定义,对于定义域为[-1,+∞)的函数f(x)=x2为m高调函数,易知f(-1)=f(1),故得m≥1-(-1),即m≥2;定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,画出函数图象,可得4≥3a2-(-a2)⇒-1≤a≤1. 【解析】 ∵f(-1)=f(1),m≥1-(-1),即m≥2, f(x)=|x-a2|-a2的图象如图,∴4≥3a2-(-a2)⇒-1≤a≤1. 故答案为:m≥2;-1≤a≤1
复制答案
考点分析:
相关试题推荐
如图,平面α、β、γ两两互相垂直,长为manfen5.com 满分网的线段AB在α、β、γ内的射影的长度分别为manfen5.com 满分网、a、b,则a+b的最大值为   
manfen5.com 满分网 查看答案
manfen5.com 满分网manfen5.com 满分网,(x,y)∈M∪N,当2x+y取得最大值时,(x,y)∈N,(x,y)∉M,则实数t的取值范围是    查看答案
manfen5.com 满分网的展开式中常数项为    .(用数字作答) 查看答案
如图,I表示南北方向的公路,A地在公路的正东2km处,B地在A地北偏东60°方向manfen5.com 满分网处,河流沿岸PQ(曲线)上任一点到公路l和到A地距离相等,现要在河岸PQ上选一处M建一座码头,向A,B两地转运货物,经测算从M到A,B修建公路的费用均为a万元/km,那么修建这两条公路的总费用最低是(单位万元)( )
manfen5.com 满分网
A.manfen5.com 满分网
B.5a
C.manfen5.com 满分网
D.6a
查看答案
若函数y=f(x)满足:①对任意的a、b∈R恒有f(a+b)=f(a)+f(b)+2ab;②y=f(x)图象的一条对称轴方程是x=k;③y=f(x)在区间[1,2]上单调递增,则实数k的取值范围是( )
A.k≤1
B.k≥2
C.k≤2
D.k≥1
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.