满分5 > 高中数学试题 >

已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n...

已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两实根,且a1=1.
(1)求证:数列manfen5.com 满分网是等比数列;
(2)设Sn是数列{an}的前n项和,求Sn
(3)问是否存在常数λ,使得bn>λSn对∀n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由.
(1)先根据an,an+1是关于x的方程x2-2n•x+bn=0(n∈N*)的两实根,得到:,再计算的值,从而得出数列是首项为,公比为-1的等比数列; (2)由(1)得,再利用等比数列的求和公式即可求Sn; (3)由(2)得,要使bn>λSn,对∀n∈N*都成立,下面对n进行分类讨论:①当n为正奇数时,②当n为正偶数时,分别求得λ的取值范围,最后综上所述得到,存在常数λ,使得bn>λSn对∀n∈N*都成立,λ的取值范围. 【解析】 (1)证明:∵an,an+1是关于x的方程x2-2n•x+bn=0(n∈N*)的两实根, ∴(2分) ∵. 故数列是首项为,公比为-1的等比数列.(4分) (2)由(1)得, 即∴=.(8分) (3)由(2)得 要使bn>λSn,对∀n∈N*都成立, 即(*)(11分) ①当n为正奇数时,由(*)式得: 即 ∵2n+1-1>0,∴对任意正奇数n都成立, 故为奇数)的最小值为1. ∴λ<1.(13分) ②当n为正偶数时,由(*)式得:,即 ∵2n-1>0,∴对任意正偶数n都成立, 故为偶数)的最小值为. ∴.(15分) 综上所述得,存在常数λ,使得bn>λSn对∀n∈N*都成立,λ的取值范围为(-∞,1).(16分)
复制答案
考点分析:
相关试题推荐
2008年世界经济出现严重衰退,我国政府为了刺激经济增长,2009年开始加大货币贷款量,为一批中小企业解决资经短缺问题.某私营企业获得一笔贷款准备新建一栋面积为10000m2,高为10m,底面为矩形的厂房,由于受地理环境的影响,矩形的一边(南北方向)不能超过a(m),已知厂房的地面造价为800元/m2,顶的造价为500元/m2,墙壁的造价为600元/m2,设厂房南北方向长为x(m),造价为y(元).
(I)写出用x(m)表示y(元)的函数关系式并指出定义域;
(II)求x为何值时厂房的造价最低,并求出最低价.
查看答案
已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).
(1)当a=1时,求f(x)的单调区间;
(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,说明理由.
查看答案
已知函数manfen5.com 满分网的最小正周期为3π,当x∈[0,π]时,函数f(x)的最小值为0.
(1)求函数f(x)的表达式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.
查看答案
设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,其中θ∈(0,manfen5.com 满分网).
(1)求manfen5.com 满分网的取值范围;
(2)若函数f(x)=|x-1|,比较f与f的大小.
查看答案
记关于x的不等式manfen5.com 满分网的解集为P,不等式|x-1|≤1的解集为Q.
(I)若a=3,求P;
(II)若Q⊆P,求正数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.