过B作BD垂直于AC于D,连接SD,由已知中底面ABC为边长等于2的等边三角形,SA⊥底面ABC,易得∠BSD即为直线SB与平面SAC所成角,根据SA=3,使用勾股定理求出三角形SBD中各边的长后,解三角形SBD即可得到.
【解析】
过B作BD垂直于AC于D,连接SD
∵底面ABC为边长等于2的等边三角形,SA⊥底面ABC,
∴BD⊥AC,SA⊥BD,AC∩SA=A
则BD⊥平面SAC,
则∠BSD即为直线SB与平面SAC所成角
∵SA=3,
∴SD=,BD=,SB=
在Rt∠SBD中,sin∠BSD==
故答案为: