满分5 > 高中数学试题 >

已知曲线C1:y=ax2+b和曲线C2:y=2blnx(a,b∈R)均与直线l:...

已知曲线C1:y=ax2+b和曲线C2:y=2blnx(a,b∈R)均与直线l:y=2x相切.
(1)求实数a、b的值;
(2)设直线x=t(t>0)与曲线C1,C2及直线l分别相交于点M,N,P,记f(t)=|MP|-|NP|,求f(t)在区间(0,e](e为自然对数的底)上的最大值.
(1)由题意及导数的几何含义可以先设出两个切点的坐标,利用条件建立a,b方程解出即可; (2)由题意直线x=t(t>0)与曲线C1,C2及直线l分别相交于点M,N,P,可以联立直线方程与曲线方程及直线方程,求出M,N,P的坐标,利用两点间的距离公式得到 (t)=|MP|-|NP|的函数表达式,在有定义域求出值域即可. 【解析】 (1)设曲线C1,C2与直线l相切的切点分别是(t1,at12+b),(t2,2blnt2), 则, 对函数分别求导可得,y'=2at, 则⇒, 所以切线方程分别为:,y-2blnb=2(x-b),即为y=2x 所以 ∴ (2)由(1)可得线C1:y=x2+e和曲线C2:y=2elnx,L;y=2x 由题意可以得到:,, ∴M(t,),N(t,2elnt),P(t,2t), 所以f(t)=|MP|-|NP|=,≥0在t∈(0,e]恒成立 所以函数f(t)在定义域上位单调递增函数,所以(f(t)max=f(e)=0.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,若a1=2,n•an+1=Sn+n(n+1).
(1)求数列{an}的通项公式;
(2)令manfen5.com 满分网,是否存在正整数m,使得对一切正整数n,总有bn≤m?若存在,求出m的最小值;若不存在,说明理由.
查看答案
如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.
(1)若点O为线段AC的中点,求证:OF∥平面ADE;
(2)求四面体ACEF的体积.

manfen5.com 满分网 查看答案
某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如右图所示,工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示,假设两项培训是相互独立的,结业考试也互不影响.
年龄分组A项培训成绩优秀人数B项培训成绩优秀人数
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)设△ABC的内角A,B,C对边分别为manfen5.com 满分网manfen5.com 满分网垂直,求a,b的值.
查看答案
已知x,y,z∈R,有下列不等式:
(1)x2+y2+z2+3≥2(x+y+z);(2)manfen5.com 满分网;(3)|x+y|≤|x-2|+|y+2|;(4)x2+y2+z2≥xy+yz+zx.
其中一定成立的不等式的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.