根据所给的分段函数,在这一点连续说明在这一点一个的极限和另一个的函数值相等,得到a的值,第二个是一个函数恒成立问题,注意对勾函数的值域,第三个是解一个不等式,条件中漏掉解集中的元素.
【解析】
∵函数在点x=1处连续,
∴a+1=
∴a+1=5
a=4,故①正确,
若不等式对于一切非零实数x均成立
∵|x+|≥2,
∴|a-2|+1≤2
∴实数a的取值范围是1<a<3;故②正确,
∵不等式(x-2)|x2-2x-8|≥0的解集是{x|x≥2,或x=4或x=-2}
故③不正确,
总上可知①②正确,
故答案为:①②