满分5 > 高中数学试题 >

(选修4-5:不等式选讲)设f(x)=x2-x+l,实数a满足|x-a|<l,求...

(选修4-5:不等式选讲)设f(x)=x2-x+l,实数a满足|x-a|<l,求证:|f(x)-f(a)|<2(|a|+1.
先证明∴|f(x)-f(a)|<|x+a-1|,再证|x+a-1|<1+|2a|+1,从而证得结论. 证明:∵f(x)=x2-x+1,|x-a|<l, ∴|f(x)-f(a)|=|x2-x-a2+a|=|x-a|•|x+a-1|<|x+a-1|, 又|x+a-1|=|(x-a)+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1), ∴:|f (x)-f (a)|<2(|a|+1)成立.
复制答案
考点分析:
相关试题推荐
已知直线l经过点P(1,1),倾斜角manfen5.com 满分网
(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交与两点A,B,求点P到A,B两点的距离之积.
查看答案
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换. 求逆矩阵M-1以及椭圆manfen5.com 满分网在M-1的作用下的新曲线的方程.
查看答案
△ABC中,AB<AC,AD、AE分别是BC边上的高和中线,且∠BAD=∠EAC,证明∠BAC是直角.
查看答案
定义数列{an}:a1=1,当n≥2时,manfen5.com 满分网其中r≥0常数.
(Ⅰ)若当r=0时,Sn=a1+a2+…+an
(1)求:Sn
(2)求证:数列{S2n}中任意三项均不能构成等差数列;
(Ⅱ)求证:对一切n∈N*及r≥0,不等式manfen5.com 满分网恒成立.
查看答案
已知函数f(x)=2lnx-x2(x>0).
(1)求函数f(x)的单调区间与最值;
(2)若方程2xlnx+mx-x3=0在区间manfen5.com 满分网内有两个不相等的实根,求实数m的取值范围;  (其中e为自然对数的底数)
(3)如果函数g(x)=f(x)-ax的图象与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,求证:g'(px1+qx2)<0(其中,g'(x)是g(x)的导函数,正常数p,q满足p+q=1,q>p)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.