选修4-4:坐标系与参数方程选讲.
在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系、设曲线C参数方程为
(θ为参数),直线l的极坐标方程为
.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)求曲线C上的点到直线l的最大距离.
考点分析:
相关试题推荐
如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:
(1)∠DEA=∠DFA;
(2)AB
2=BE•BD-AE•AC.
查看答案
已知函数
.
(1)求函数f(x)的单调区间和极值;
(2)若函数y=g(x)对任意x满足g(x)=f(4-x),求证:当x>2,f(x)>g(x);
(3)若x
1≠x
2,且f(x
1)=f(x
2),求证:x
1+x
2>4.
查看答案
已知A、B分别是直线
和
上的两个动点,线段AB的长为
,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)过点N(1,0)作与x轴不垂直的直线l,交曲线C于P、Q两点,若在线段ON上存在点M(m,0),使得以MP、MQ为邻边的平行四边形是菱形,试求m的取值范围.
查看答案
某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1) 求这次铅球测试成绩合格的人数;
(2) 用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记X表示两人中成绩不合格______的人数,求X的分布列及数学期望;
(3) 经过多次测试后,甲成绩在8~10米之间,乙成绩在9.5~10.5米之间,现甲、乙各投掷一次,求甲比乙投掷远的概率.
查看答案
如图,在三棱柱ABC-A
1B
1C
1中,AA
1⊥平面ABC,AB=BC=CA=AA
1,D为AB的中点.
(1)求证:BC
1∥平面DCA
1;
(2)求二面角D-CA
1-C
1的平面角的余弦值.
查看答案