由题设条件定义在R上的函数f(x)对于任意的x∈R,都有f(x+2)=-f(x)成立,可得出函数是以4为同期的函数,则相应的数列也是以四为周期的,由此得出数列中不同的项最多有4项.
【解析】
由题设条件,(x)对于任意的x∈R,都有f(x+2)=-f(x)成立
∴f(x+2)=-f(x)=f(x-2),即T=4
因为an=f(n),所以an+4=f(n+4)=f(n)=an,
故a4n+1=a1,a4n+2=a2,a4n+3=a3,a4n+4=a4
∴数列{an}中值不同的项最多有4项
故答案为4