满分5 > 高中数学试题 >

给出以下四个命题:①若cosαcosβ=1,则sin(α+β)=0;②已知直线x...

给出以下四个命题:①若cosαcosβ=1,则sin(α+β)=0;②已知直线x=m与函数manfen5.com 满分网的图象分别交于点M,N,则|MN|的最大值为manfen5.com 满分网;③若数列an=n2+λn(n∈N+)为单调递增数列,则λ取值范围是λ<-2;④已知数列an的通项manfen5.com 满分网,其前n项和为Sn,则使Sn>0的n的最小值为12.其中正确命题的序号为   
①若cosαcosβ=1,可知,α、β两角的同时在x轴正半轴或者在负半轴上,有此则可得sin(α+β)=0; ②已知直线x=m与函数的图象分别交于点M,N,则|MN|的最大值为,f(x)-g(x)的最大值即为|MN|的最大值,验证即可; ③若数列an=n2+λn(n∈N+)为单调递增数列,则λ取值范围是λ<-2,由二次函数的性质及数列的离散性特征转化出参数所满足的不等式即可; ④已知数列an的通项,其前n项和为Sn,则使Sn>0的n的最小值为12,研究数列的前11项的值即可得出结论. 【解析】 ①若cosαcosβ=1,则α、β两角的同时在x轴正半轴或者在负半轴上,故sin(α+β)=0,此命题正确; ②已知直线x=m与函数的图象分别交于点M,N,则|MN|的最大值为,由于|MN|=|f(x)-g(x)|=|sinx-cosx|=|sin(x-)|,此命题正确; ③若数列an=n2+λn(n∈N+)为单调递增数列,则λ取值范围是λ<-2,由二次函数的性质及数列的特征得,即λ>-3,故此命题不对; ④已知数列an的通项,其前n项和为Sn,则使Sn>0的n的最小值为12,数列前十一项的值分别为-,,故S11>0,使Sn>0的n的最小值为11,此命题错误. 故答案为①②
复制答案
考点分析:
相关试题推荐
已知实数x,y满足manfen5.com 满分网,则2x+y-2的最大值为    查看答案
已知向量manfen5.com 满分网manfen5.com 满分网的夹角为120°,manfen5.com 满分网,则manfen5.com 满分网=    查看答案
若二项式manfen5.com 满分网的展开式中的常数项为-160,则manfen5.com 满分网=   
(文科)下表是某厂1~4月份用水量(单位:百吨)的一组数据,
月  份x1234
用水量y4.5432.5
由其散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程
    查看答案
设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].如果manfen5.com 满分网为闭函数,那么k的取值范围是( )
A.-1<k≤manfen5.com 满分网
B.manfen5.com 满分网≤k<1
C.k>-1
D.k<1
查看答案
某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )
A.30
B.25
C.20
D.15
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.