满分5 > 高中数学试题 >

证明: (1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2, (2)已...

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:manfen5.com 满分网
(1)用比较法证明不等式,(x3+y3 )-(x2y+xy2)=(x+y)(x-y)2,分析符号可得结论. (2)由题意得,1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤3(a2+b2+c2),结论得证. 证明:(1)∵(x3+y3 )-(x2y+xy2)=x2 (x-y)+y2(y-x)=(x-y)(x2-y2 ) =(x+y)(x-y)2. ∵x,y都是正实数,∴(x-y)2≥0,(x+y)>0,∴(x+y)(x-y)2≥0, ∴x3+y3≥x2y+xy2. (2)∵a,b,c∈R+,且a+b+c=1,∴1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac ≤3(a2+b2+c2),∴a2+b2+c2≥,当且仅当a=b=c 时,等号成立.
复制答案
考点分析:
相关试题推荐
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,manfen5.com 满分网).若直线l过点P,且倾斜角为manfen5.com 满分网,圆C以M为圆心、4为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系.
查看答案
manfen5.com 满分网选做题
如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:
(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE•GF.
查看答案
已知函数f(x)=2e2x+2x+sin2x.(Ⅰ)试判断函数f (x)的单调性并说明理由;
(Ⅱ)若对任意的x∈[0,1],不等式组manfen5.com 满分网恒成立,求实数k的取值范围.
查看答案
已知点A(0,1)、B(0,-1),P是一个动点,且直线PA、PB的斜率之积为manfen5.com 满分网
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)设Q(2,0),过点(-1,0)的直线l交C于M、N两点,△QMN的面积记为S,若对满足条件的任意直线l,不等式S≤λtanMQN恒成立,求λ的最小值.
查看答案
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.
(文科)如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC⊥平面ABC;
(Ⅱ)设CD=a,求三棱锥A-BFE的体积.

manfen5.com 满分网 manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.