(I)设{an}是公差d,由a2=1,S5=20建立方程求出公差与首项,代入等差数列的通项公式即可.
(II){bn}是等比数列,满足b1=a12,b2=a22,b3=a32,由等比数列的性质得到方程(a1+d)4=a1×(a1+2d)2,解出等差数列的首项与公差的关系,根据等比数列的性质求公比.
【解析】
(I)设{an}是公差d由题意,∴,∴an=3n-5
(II)∵{bn}是等比数列,满足b1=a12,b2=a22,b3=a32,∴(a1+d)4=a1×(a1+2d)2,
∴(a1+d)2=a1×(a1+2d),(a1+d)2=-a1×(a1+2d)
∴d=0(舍)或d2+4a1d+2a12=0∴d=(-2±)a1
①当d=(-2-)a1时,q===3+2
②当d=(-2+)a1时,q===3-2
综上,q=3+2或q=3-2