满分5 > 高中数学试题 >

如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠A...

如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:
(1)AE∥平面BDF;
(2)平面BDF⊥平面ACE.

manfen5.com 满分网
(1)设AC∩BD=G,由三角形中位线的性质可得  FG∥AE,从而证明AE∥平面BFD. (2)利用线面垂直的判定定理AE⊥平面BCE,得到AE⊥BF,由等腰直角三角形的性质证明BF⊥CE, 从而证明BF⊥平面ACE,即证平面BDF⊥平面ACE. 证明:(1)设AC∩BD=G,连接FG,易知G是AC的中点,∵F是EC中点,由三角形中位线的性质可得  FG∥AE, ∵AE⊄平面BFD,FG⊂平面BFD,∴AE∥平面BFD. (2)∵平面ABCD⊥平面ABE,BC⊥AB, 平面ABCD∩平面ABE=AB∴BC⊥平面ABE,又∵AE⊂平面ABE,∴BC⊥AE, 又∵AE⊥BE,BC∩BE=B,∴AE⊥平面BCE,∴AE⊥BF. 在△BCE中,BE=CB,F为CE的中点,∴BF⊥CE,AE∩CE=E,∴BF⊥平面ACE, 又BF⊂平面BDF,∴平面BDF⊥平面ACE.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)求f(x)的最大值及相应x的值.
查看答案
已知函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|(x∈R),且f(a2-3a+2)=f(a-1),则满足条件的所有整数a的和是    查看答案
已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值范围是    查看答案
已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平行,若f(x)在区间[t,t+1]上单调递减,则实数t的取值范围是    查看答案
如图,三棱柱ABC-A1B1C1的所有棱长均等于1,且∠A1AB=∠A1AC=60°,则该三棱柱的体积是    manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.