满分5 > 高中数学试题 >

已知正项等比数列{an}满足:log3a1+log3a3=4,log3a5+lo...

已知正项等比数列{an}满足:log3a1+log3a3=4,log3a5+log3a7=12
(l)求数列{an}的通项公式
(2)记Tn=log3a1+log3a2+…+log3an,如果数列{bn}满足:manfen5.com 满分网;若存在n∈N*,使不等式:manfen5.com 满分网成立,求实数m的取值范围.
(1)首先根据对数函数性质求出a1a3=34,a5a7=312,进而求出a2和a6,然后求出公比,就可以得出数列的通项公式; (2)先运用对数函数的性质求出Tn,然后求出数列{bn},再根据单调性可知n=1时,数列{bn}有最小值,即可求出m的取值范围. 【解析】 (1)∵log3a1+log3a3=log3(a1a3)=4,log3a5+log3a7=log3(a5a7)=12 ∴a1a3=34,a5a7=312∴a2=32,a6=36 ∴ ∵an>0 ∴q=3,an=a2qn-2=9×3n-2=3n (2)由(1)可得Tn=log3a1+log3a2+…+log3an=log3(a1a2…an)= ∴ ∴=(*) 由数列的单调性可知n=1时,(*)有最小值 若存在n∈N*,使不等式:成立,则只需m
复制答案
考点分析:
相关试题推荐
在四棱锥P-ABCD中,PA⊥面ABCD,底面ABCD为正方形,PA=AB=1,E是PD的中点.
(1)求证:PB∥平面ACE;
(2)求证:PC⊥BD;
(3)求四棱锥P-ABCD的表面积.

manfen5.com 满分网 查看答案
随机抽取100名学生,测得他们的身高(单位:cm),按照区问[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图(如图).
(1)求频率分布直方图中x的值及身高在170cm以上的学生人数;
(2)将身高在[170,175],[175,180),[180,185]内的学生依次记为A,B,C三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;
(3)在(2)的条件下,要从6名学生中抽取2人,用列举法计算B组中至少有1人被抽中的概率.

manfen5.com 满分网 查看答案
三角形的三内角A,B,C所对边的长分别为a,b,c,设向量manfen5.com 满分网=(c-a,b-a),manfen5.com 满分网=(a+b,c),若manfen5.com 满分网
(1)求角B的大小.
(2)求sinA+sinC的取值范围.
查看答案
若|x-1|+|x-2|+|x-3|≥m恒成立,则m的取值范围为    查看答案
下列说法正确的题号为   
①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,则-3≤a≤3
②函数y=f(x)与直线x=l的交点个数为0或l
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称
manfen5.com 满分网时,函数y=lg(x2+x+a)的值域为R;
⑤与函数关于点(1,-1)对称的函数为y=-f(2-x). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.