满分5 > 高中数学试题 >

如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1...

manfen5.com 满分网如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
(1)设出椭圆的标准方程,长轴长是短轴长的2倍求得a和b的关系,进而把点M代入椭圆方程求得a和b的另一个关系式,然后联立求得a和b,则椭圆的方程可得. (2)依题意可表示出直线l的方程,与椭圆方程联立消去y,根据判别式大于0求得m的取值范围. (3)设直线MA、MB的斜率分别为k1,k2,问题转化为证明k1+k2=0.设出点A,B的坐标,进而表示出两斜率,根据(2)中的方程式,根据韦达定理表示出x1+x2和x1x2,进而代入到k1+k2,化简整理求得结果为0,原式得证. 【解析】 (1)设椭圆方程为 则,解得 ∴椭圆方程 (2)∵直线l平行于OM,且在y轴上的截距为m 又 ∴l的方程为: 由,∴x2+2mx+2m2-4=0 ∵直线l与椭圆交于A、B两个不同点,∴△=(2m)2-4(2m2-4)>0, ∴m的取值范围是{m|-2<m<2且m≠0} (3)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可 设 由x2+2mx+2m2-4=0可得x1+x2=-2m,x1x2=2m2-4 而= = = = ∴k1+k2=0 故直线MA、MB与x轴始终围成一个等腰三角形.
复制答案
考点分析:
相关试题推荐
在等比数列{an}中,前n项和为Sn,若Sm,Sm+2,Sm+1成等差数列,则am,am+2,am+1成等差数列.
(1)写出这个命题的逆命题;
(2)判断逆命题是否为真?并给出证明.
查看答案
manfen5.com 满分网在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=1,AD=2,PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)求异面直线AE与CD所成的角的余弦值;
(3)求A点到平面PCD的距离.
查看答案
设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(I)求f (x)的最小值h(t);
(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
查看答案
某公园有甲、乙两个相邻景点,原拟定甲景点内有2个A班同学和2个B班同学;乙景点内有2个A班同学和3个B班同学,后由于某种原因,甲、乙两景点各有一个同学交换景点观光.
(1)求甲景点恰有2个A班同学的概率;
(2)求甲景点A班同学数ξ的分布列及数学期望.
查看答案
设向量manfen5.com 满分网=(sinx,cosx),manfen5.com 满分网=(cosx,cosx),x∈R,函数f(x)=manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)当manfen5.com 满分网时,求函数f(x)的值域;
(3)求使不等式f(x)≥1成立的x的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.