已知函数
.
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a-1)成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e
-1,e]上有两个零点,求实数b的取值范围.
考点分析:
相关试题推荐
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案
某学校实施“十二五高中课程改革”计划,高三理科班学生的化学与物理水平测试的成绩抽样统计如下表.成绩分A(优秀)、B(良好)、C(及格)三种等级,设x、y分别表示化学、物理成绩.例如:表中化学成绩为B等级的共有20+18+4=42人.已知x与y均为B等级的概率为0.18.
(Ⅰ)求抽取的学生人数;
(Ⅱ)若在该样本中,化学成绩的优秀率是0.3,求a,b的值;
(Ⅲ)物理成绩为C等级的学生中,已知a≥10,12≤b≤17,随机变量ξ=|a-b|,求ξ的分布列和数学期望.
查看答案
已知向量
=(sin(ωx+ϕ),2),
=(1,cos(ωx+ϕ))
,函数f(x)=(
+
)•(
-
)的图象过点
,且该函数相邻两条对称轴间的距离为2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数y=f(x)图象按向量
=
平移后,得到函数y=g(x)的图象,讨论函数y=g(x)在区间[1,2]上的单调性.
查看答案
设定义域为R的函数
若关于x的方程f
2(x)-(2m+1)f(x)+m
2=0有7个不同的实数根,则实数m=
.
查看答案
若关于实数x,y的不等式组
表示的平面区域的面积等于3,则x+y的最大值为
.
查看答案