满分5 > 高中数学试题 >

已知函数. (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+...

已知函数manfen5.com 满分网
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a-1)成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围.
(Ⅰ) 求出函数的定义域,在定义域内,求出导数大于0的区间,即为函数的增区间, 求出导数小于0的区间即为函数的减区间. (Ⅱ) 根据函数的单调区间求出函数的最小值,要使f(x)>2(a-1)恒成立,需使函数的最小值大于2(a-1), 从而求得a的取值范围. (Ⅲ)利用导数的符号求出单调区间,再根据函数g(x)在区间[e-1,e]上有两个零点,得到,  解出实数b的取值范围. 【解析】 (Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞), 因为,所以,,所以,a=1. 所以,,. 由f'(x)>0解得x>2;由f'(x)<0,解得 0<x<2. 所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2). (Ⅱ)  ,由f'(x)>0解得 ; 由f'(x)<0解得 . 所以,f(x)在区间上单调递增,在区间上单调递减. 所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f(x)>2(a-1)成立, 所以,即可. 则. 由解得 . 所以,a的取值范围是  . (Ⅲ) 依题得 ,则 . 由g'(x)>0解得  x>1;   由g'(x)<0解得  0<x<1. 所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数. 又因为函数g(x)在区间[e-1,e]上有两个零点,所以, 解得 .   所以,b的取值范围是.
复制答案
考点分析:
相关试题推荐
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网 查看答案
某学校实施“十二五高中课程改革”计划,高三理科班学生的化学与物理水平测试的成绩抽样统计如下表.成绩分A(优秀)、B(良好)、C(及格)三种等级,设x、y分别表示化学、物理成绩.例如:表中化学成绩为B等级的共有20+18+4=42人.已知x与y均为B等级的概率为0.18.
xyABC
A7205
B9186
Ca4:]b
(Ⅰ)求抽取的学生人数;
(Ⅱ)若在该样本中,化学成绩的优秀率是0.3,求a,b的值;
(Ⅲ)物理成绩为C等级的学生中,已知a≥10,12≤b≤17,随机变量ξ=|a-b|,求ξ的分布列和数学期望.
查看答案
已知向量manfen5.com 满分网=(sin(ωx+ϕ),2),manfen5.com 满分网=(1,cos(ωx+ϕ))manfen5.com 满分网,函数f(x)=(manfen5.com 满分网+manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网)的图象过点manfen5.com 满分网,且该函数相邻两条对称轴间的距离为2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)将函数y=f(x)图象按向量manfen5.com 满分网=manfen5.com 满分网平移后,得到函数y=g(x)的图象,讨论函数y=g(x)在区间[1,2]上的单调性.
查看答案
设定义域为R的函数manfen5.com 满分网若关于x的方程f2(x)-(2m+1)f(x)+m2=0有7个不同的实数根,则实数m=    查看答案
若关于实数x,y的不等式组manfen5.com 满分网表示的平面区域的面积等于3,则x+y的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.