满分5 > 高中数学试题 >

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆...

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
manfen5.com 满分网
(1)求证:AC⊥BD;

(2)求二面角A-BD-C的平面角的大小.
方法一(几何法)(1)由已知中EA⊥平面ABC,由线面垂直的性质可得ED⊥AC,结合AC⊥AB,由线面垂直的判定定理可得AC⊥平面EBD,再由线面垂直的性质得到AC⊥BD; (2)由A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径,又由几何体正(主)视图、侧(左)视图的面积分别为10和12,我们易构造r,h的方程组,求出r,h的值后,结合(1)的结论,可得∠AHC为二面角A-BD-C的平面角,解Rt△BAD,即可得到二面角A-BD-C的平面角的大小. 方法二(向量法)(1)以点D为原点,DD1、DE所在的射线分别为x轴、z轴建立如图的空间直角坐标系,分别求出AC,BD的方向向量,由两向量的数量积为0,即可得到AC⊥BD; (2)分别求出平面ABD与平面BCD的法向量,代入向量夹角公式,即可得到二面角A-BD-C的平面角的大小. 方法一(几何法): 证明:(1)因为EA⊥平面ABC,AC⊂平面ABC,所以EA⊥AC,即ED⊥AC. 又因为AC⊥AB,AB∩ED=A,所以AC⊥平面EBD. 因为BD⊂平面EBD,所以AC⊥BD.(4分) 【解析】 (2)因为点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径. 设圆O的半径为r,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得, (6分) 解得 所以BC=4,.(7分) 过点C作CH⊥BD于点H,连接AH, 由(1)知,AC⊥BD,AC∩CH=C,所以BD⊥平面ACH. 因为AH⊂平面ACH,所以BD⊥AH. 所以∠AHC为二面角A-BD-C的平面角.(9分) 由(1)知,AC⊥平面ABD,AH⊂平面ABD, 所以AC⊥AH,即△CAH为直角三角形. 在Rt△BAD中,,AD=2,则. 由AB×AD=BD×AH,解得. 因为.(13分) 所以∠AHC=60°. 所以二面角A-BD-C的平面角大小为60°.(14分) 方法二(向量法): 证明:(1)因为点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径. 设圆O的半径为r,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得, (2分) 解得 所以BC=4,. 以点D为原点,DD1、DE所在的射线分别为x轴、z轴建立如图的空间直角坐标系 D-xyz,则D(0,0,0),D1(4,0,0),A(0,0,2),B(2,2,2),C(2,-2,2),,. 因为, 所以. 所以AC⊥BD.(9分) 【解析】 (2)设n=(x,y,z)是平面BCD的法向量,因为, 所以即 取z=-1,则n=(1,0,-1)是平面BCD的一个法向量.(11分) 由(1)知,AC⊥BD,又AC⊥AB,AB∩BD=B,所以AC⊥平面ABD. 所以是平面ABD的一个法向量.(12分) 因为, 所以. 而等于二面角A-BD-C的平面角, 所以二面角A-BD-C的平面角大小为60°.(14分)
复制答案
考点分析:
相关试题推荐
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
听觉
视觉
视觉记忆能力
偏低中等偏高超常
听觉
记忆
能力
偏低751
中等183b
偏高2a1
超常211
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为manfen5.com 满分网
(1)试确定a、b的值;
(2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;
(3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的数学期望Eξ.
查看答案
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求sinα的值.

manfen5.com 满分网 查看答案
设点A的极坐标为manfen5.com 满分网,直线l过点A且与极轴所成的角为manfen5.com 满分网,则直线l的极坐标方程为    查看答案
在梯形ABCD中,AD∥BC,AD=2,BC=5,点E、F分别在AB、CD上,且EF∥AD,若manfen5.com 满分网,则EF的长为    查看答案
将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中,两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q且p,q∈N*)是正整数n的最佳分解时,我们规定函数manfen5.com 满分网,例如manfen5.com 满分网.关于函数f(n)有下列叙述:①manfen5.com 满分网,②manfen5.com 满分网,③manfen5.com 满分网,④manfen5.com 满分网.其中正确的序号为    (填入所有正确的序号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.