满分5 > 高中数学试题 >

已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜...

已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(1)求实数a的值;
(2)若k∈Z,且manfen5.com 满分网对任意x>1恒成立,求k的最大值;
(3)当n>m≥4时,证明(mnnm>(nmmn
(1)求出f(x)的导函数,把x=e代入导函数中求出的导函数值即为切线方程的斜率,根据切线斜率为3列出关于a的方程,求出方程的解即可得到a的值; (2)将原来的恒成立问题转化为研究函数的最值问题,研究区间(1,+∞)上的最值问题,先求出函数的极值,研究极值点左右的单调性,最后确定出最小值,从而得出k的最大值. (3)由(2)知,是[4,+∞)上的增函数,从而有当n>m≥4时,由此式即可化简得到ln(nmnmm)>ln(mmnnn. (1)【解析】 因为f(x)=ax+xlnx,所以f'(x)=a+lnx+1.(1分) 因为函数f(x)=ax+xlnx的图象在点x=e处的切线斜率为3, 所以f'(e)=3,即a+lne+1=3. 所以a=1.(2分) (2)【解析】 由(1)知,f(x)=x+xlnx, 所以对任意x>1恒成立,即对任意x>1恒成立.(3分) 令, 则,(4分) 令h(x)=x-lnx-2(x>1), 则, 所以函数h(x)在(1,+∞)上单调递增.(5分) 因为h(3)=1-ln3<0,h(4)=2-2ln2>0, 所以方程h(x)=0在(1,+∞)上存在唯一实根x,且满足x∈(3,4). 当1<x<x时,h(x)<0,即g'(x)<0,当x>x时,h(x)>0,即g'(x)>0,(6分) 所以函数在(1,x)上单调递减,在(x,+∞)上单调递增. 所以.(7分) 所以k<[g(x)]min=x∈(3,4). 故整数k的最大值是3.(8分) (3)证明:由(2)知,是[4,+∞)上的增函数,(9分) 所以当n>m≥4时,.(10分) 即n(m-1)(1+lnn)>m(n-1)(1+lnm). 整理,得mnlnn+mlnm>mnlnm+nlnn+(n-m).(11分) 因为n>m,所以mnlnn+mlnm>mnlnm+nlnn.(12分) 即lnnmn+lnmm>lnmmn+lnnn. 即ln(nmnmm)>ln(mmnnn).(13分) 所以(mnn)m>(nmm)n.(14分) 证明2:构造函数f(x)=mxlnx+mlnm-mxlnm-xlnx,(9分) 则f'(x)=(m-1)lnx+m-1-mlnm.(10分) 因为x>m≥4,所以f'(x)>(m-1)lnm+m-1-mlnm=m-1-lnm>0. 所以函数f(x)在[m,+∞)上单调递增.(11分) 因为n>m,所以f(n)>f(m). 所以mnlnn+mlnm-mnlnm-nlnn>m2lnm+mlnm-m2lnm-mlnm=0.(12分) 即mnlnn+mlnm>mnlnm+nlnn. 即lnnmn+lnmm>lnmmn+lnnn. 即ln(nmnmm)>ln(mmnnn).(13分) 所以(mnn)m>(nmm)n.(14分)
复制答案
考点分析:
相关试题推荐
已知双曲线C:manfen5.com 满分网和圆O:x2+y2=b2(其中原点O为圆心),过双曲线C上一点P(x,y)引圆O的两条切线,切点分别为A、B.
(1)若双曲线C上存在点P,使得∠APB=90°,求双曲线离心率e的取值范围;
(2)求直线AB的方程;
(3)求三角形OAB面积的最大值.
查看答案
已知数列{an}的前n项和manfen5.com 满分网,且a1=1.
(1)求数列{an}的通项公式;
(2)令bn=lnan,是否存在k(k≥2,k∈N*),使得bk、bk+1、bk+2成等比数列.若存在,求出所有符合条件的k值;若不存在,请说明理由.
查看答案
一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
manfen5.com 满分网
(1)求证:AC⊥BD;

(2)求二面角A-BD-C的平面角的大小.
查看答案
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
听觉
视觉
视觉记忆能力
偏低中等偏高超常
听觉
记忆
能力
偏低751
中等183b
偏高2a1
超常211
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为manfen5.com 满分网
(1)试确定a、b的值;
(2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;
(3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的数学期望Eξ.
查看答案
如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求sinα的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.