满分5 > 高中数学试题 >

已知函数f(x)=x3-x2+cx+d有极值. (Ⅰ)求c的取值范围; (Ⅱ)若...

已知函数f(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+cx+d有极值.
(Ⅰ)求c的取值范围;
(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<manfen5.com 满分网d2+2d恒成立,求d的取值范围.
(I)由已知中函数解析式f(x)=x3-x2+cx+d,我们易求出导函数f′(x)的解析式,然后根据函数f(x)=x3-x2+cx+d有极值,方程f′(x)=x2-x+c=0有两个实数解,构造关于c的不等式,解不等式即可得到c的取值范围; (Ⅱ)若f(x)在x=2处取得极值,则f′(2)=0,求出满足条件的c值后,可以分析出函数f(x)=x3-x2+cx+d的单调性,进而分析出当x<0时,函数的最大值,又由当x<0时,f(x)<d2+2d恒成立,可以构造出一个关于d的不等式,解不等式即可得到d的取值范围. 解(Ⅰ)∵f(x)=x3-x2+cx+d, ∴f′(x)=x2-x+c,要使f(x)有极值,则方程f′(x)=x2-x+c=0有两个实数解, 从而△=1-4c>0, ∴c<. (Ⅱ)∵f(x)在x=2处取得极值, ∴f′(2)=4-2+c=0, ∴c=-2. ∴f(x)=x3-x2-2x+d, ∵f′(x)=x2-x-2=(x-2)(x+1), ∴当x∈(-∞,-1]时,f′(x)>0,函数单调递增,当x∈(-1,2]时,f′(x)<0,函数单调递减. ∴x<0时,f(x)在x=-1处取得最大值, ∵x<0时,f(x)<恒成立, ∴<,即(d+7)(d-1)>0, ∴d<-7或d>1, 即d的取值范围是(-∞,-7)∪(1,+∞).
复制答案
考点分析:
相关试题推荐
(理)已知ABCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且manfen5.com 满分网=manfen5.com 满分网=λ(0<λ<1).
(1)求证不论λ为何值,总有平面BEF⊥平面ABC;
(2)若平面BEF与平面BCD所成的二面角的大小为60°,求λ的值.

manfen5.com 满分网 查看答案
(文)一个多面体的三视图(正前方垂直于平面AA1B1B)及直观图如图(一)所示,(如图二)M、N分别是A1B、B1C1的中点.
(1)计算多面体的体积;
(2)求证MN∥平面AA1C1C;
(3)若O是AB的中点,求证AM⊥平面A1OC.

manfen5.com 满分网 manfen5.com 满分网 查看答案
(理)某单位有8名员工,其中有5名员工曾经参加过一种或几种技能培训,另外3名员工没有参加过任何技能培训,现要从8名员工中任选3人参加一种新的技能培训;
(I)求恰好选到1名曾经参加过技能培训的员工的概率;
(Ⅱ)这次培训结束后,仍然没有参加过任何技能培训的员工人数X是一个随机变量,求X的分布列和数学期望.
查看答案
(文)在新中国建立的60年,特别是改革开放30年以来,我国的经济快速增长,人民的生活水平稳步提高.某地2006年到2008年每年的用电量与GDP的资料如下:
日    期2006年2007年2008年
用电量(x亿度)111312
GDP增长率(y(百分数))253026
(1)用表中的数据可以求得b=manfen5.com 满分网,试求出y关于x的线性回归方程manfen5.com 满分网=bx+a;
(2)根据以往的统计资料:当地每年的GDP每增长1%,就会带动1万就业.由于受金融危机的影响,预计2009年的用电量是8亿度,2009年当地新增就业人口是20万,请你估计这些新增就业人口的就业率.
查看答案
manfen5.com 满分网如图,已知点A(1,1)和单位圆上半部分上的动点B.
(1)若manfen5.com 满分网,求向量manfen5.com 满分网
(2)求|manfen5.com 满分网|的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.