函数f(x)=x
3-3x.
(1)求函数f(x)的极值;
(2)已知f(x)在[t,t+2]上是增函数,求t的取值范围;
(3)f(x)在[t,t+2]上最大值M与最小值m之差M-m为g(t),求g(t)的最小值.
考点分析:
相关试题推荐
已知函数f(x)=x
2-4x+(2-a)lnx,(a∈R,a≠0).
(1)当a=8时,求函数f(x)的单调区间;
(2)求函数f(x)在区间[e,e
2]上的最小值.
查看答案
某直角走廊的示意图如图所示,其两边走廊的宽度均为2m.
(1)过点p的一条直线与走廊的外侧两边交于A,B两点,且与走廊的一边的夹角为
,将线段AB的长度l表示为θ的函数;
(2)一根长度为5m的铁棒能否水平(铁棒与地面平行)通过该直角走廊?请说明理由(铁棒的粗细忽略不计).
查看答案
汶川大地震后,为了消除某堰塞湖可能造成的危险,救授指挥部商定,给该堰塞湖挖一个横截面为等腰梯形的简易引水槽(如图所示)进行引流,已知等腰梯形的下底与腰的长度都为a,且水槽的单位时间内的最大流量与横载面的面积为正比,比例系数k>0.
(1)试将水槽的最大流量表示成关于θ的函数f(θ);
(2)为确保人民的生命财产安全,请你设计一个方案,使单位时间内水槽的流量最大(即当θ为多大时,单位时间内水槽的流量最大).
查看答案
已知圆C的圆心在抛物线x
2=2py(p>0)上运动,且圆C过A(0,p)点,若MN为圆C在x轴上截得的弦.
(1)求弦长MN;
(2)设AM=l
1,AN=l
2,求
的取值范围.
查看答案
已知圆F
1:(x+1)
2+y
2=16,定点F
2(1,0),动圆过点F
2,且与圆F
1相内切.
(1)求点M的轨迹C的方程;
(2)若过原点的直线l与(1)中的曲线C交于A,B两点,且△ABF
1的面积为
,求直线l的方程.
查看答案