满分5 > 高中数学试题 >

已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a,...

已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a,其中a,b都是大于1
的正整数,且a1<b1,b2<a3
(1)求a的值;
(2)若对于任意的n∈N+,总存在m∈N+,使得am+3=bn成立,求b的值;
(3)令Cn=an+1+bn,问数列{Cn}中是否存在连续三项成等比数列?若存在,求出所有成等比数列的连续三项;若不存在,请说明理由.
(1)由题意知an=a+(n-1)b,bn=b•an-1.b≥3.a<3.再由2≤a<3,根据a∈N,可得a=2. (2)由题意知b(2n-1-m+1)=5.再b≥3和数的整除性,可知b是5的约数.故2n-1-m+1=1,b=5. (3)设数列{Cn}中,Cn,Cn+1,Cn+2成等比数列,由Cn=2+nb+b•2n-1,(Cn+1)2=Cn•Cn+2,得(2+nb+b+b•2n)2=(2+nb+b•2n-1)(2+nb+2b+b•2n+1).由此可以推出当b≠4时,不存在连续三项成等比数列;当b=4时,数列{Cn}中的第二、三、四项成等比数列,这三项依次是18,30,50. 【解析】 (1)由已知,得an=a+(n-1)b,bn=b•an-1.由a1<b1,b2<a3,得a<b,ab<a+2b. 因a,b都为大于1的正整数,故a≥2.又b>a,故b≥3. 再由ab<a+2b,得(a-2)b<a. 由b>a,故(a-2)b<b,即(a-3)b<0. 由b≥3,故a-3<0,解得a<3. 于是2≤a<3,根据a∈N,可得a=2. (2)由a=2,对于任意的n∈N*,均存在m∈N+,使得b(m-1)+5=b•2n-1,则b(2n-1-m+1)=5. 又b≥3,由数的整除性,得b是5的约数. 故2n-1-m+1=1,b=5. 所以b=5时,存在正自然数m=2n-1满足题意. (3)设数列{Cn}中,Cn,Cn+1,Cn+2成等比数列,由Cn=2+nb+b•2n-1,(Cn+1)2=Cn•Cn+2,得(2+nb+b+b•2n)2=(2+nb+b•2n-1)(2+nb+2b+b•2n+1). 化简,得b=2n+(n-2)•b•2n-1.(※) 当n=1时,b=1时,等式(※)成立,而b≥3,不成立. 当n=2时,b=4时,等式(※)成立. 当n≥3时,b=2n+(n-2)•b•2n-1>(n-2)•b•2n-1≥4b,这与b≥3矛盾. 这时等式(※)不成立. 综上所述,当b≠4时,不存在连续三项成等比数列;当b=4时,数列{Cn}中的第二、三、四项成等比数列,这三项依次是18,30,50.
复制答案
考点分析:
相关试题推荐
函数f(x)=x3-3x.
(1)求函数f(x)的极值;
(2)已知f(x)在[t,t+2]上是增函数,求t的取值范围;
(3)f(x)在[t,t+2]上最大值M与最小值m之差M-m为g(t),求g(t)的最小值.
查看答案
已知函数f(x)=x2-4x+(2-a)lnx,(a∈R,a≠0).
(1)当a=8时,求函数f(x)的单调区间;
(2)求函数f(x)在区间[e,e2]上的最小值.
查看答案
manfen5.com 满分网某直角走廊的示意图如图所示,其两边走廊的宽度均为2m.
(1)过点p的一条直线与走廊的外侧两边交于A,B两点,且与走廊的一边的夹角为manfen5.com 满分网,将线段AB的长度l表示为θ的函数;
(2)一根长度为5m的铁棒能否水平(铁棒与地面平行)通过该直角走廊?请说明理由(铁棒的粗细忽略不计).
查看答案
汶川大地震后,为了消除某堰塞湖可能造成的危险,救授指挥部商定,给该堰塞湖挖一个横截面为等腰梯形的简易引水槽(如图所示)进行引流,已知等腰梯形的下底与腰的长度都为a,且水槽的单位时间内的最大流量与横载面的面积为正比,比例系数k>0.
(1)试将水槽的最大流量表示成关于θ的函数f(θ);
(2)为确保人民的生命财产安全,请你设计一个方案,使单位时间内水槽的流量最大(即当θ为多大时,单位时间内水槽的流量最大).

manfen5.com 满分网 查看答案
已知圆C的圆心在抛物线x2=2py(p>0)上运动,且圆C过A(0,p)点,若MN为圆C在x轴上截得的弦.
(1)求弦长MN;
(2)设AM=l1,AN=l2,求manfen5.com 满分网的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.