满分5 >
高中数学试题 >
已知全集I=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1},...
已知全集I=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1},k∈R,且(CIA)∩B=B,则实数k的取值范围是( )
A.[1,2]
B.(0,3)
C.(-∞,0)∪(3,+∞)
D.(-∞,0]∪[3,+∞)
考点分析:
相关试题推荐
如果命题“¬(p或q)”为假命题,则( )
A.p、q均为真命题
B.p、q均为假命题
C.p、q中至少有一个为真命题
D.p、q中至多有一个为真命题
查看答案
已知 f(x)=ax-lnx,g(x)=
,其中x∈(0,e](e是自然常数),a∈R
(Ⅰ)当a=1时,求f(x)的单调性、极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+
;
(Ⅲ)是否存在a∈R,使f(x)的最小值是3,若存在求出a的值,若不存在,说明理由.
查看答案
设A、B是椭圆3x
2+y
2=λ上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.
(1)确定λ的取值范围,并求直线AB的方程;
(2)求以线段CD的中点M为圆心且与直线AB相切的圆的方程.
查看答案
已知数列{a
n} 的前n项和为S
n,且S
n+a
n=
.
(1)证明:数列{a
n-n}为等比数列;
(2)设b
n=S
n+
,T
n=
,求证:T
n<2.
查看答案
如图,平面EAD⊥平面ABCD,△EAD为正三角形,四边形ABCD为矩形,F是CD中点,EB与平面ABCD成30°角.
(1)当AD长度为何值时,点A到平面EFB的距离为2?
(2)二面角A-BF-E的大小是否与AD的长度有关?请说明.
查看答案